Materials and manufacturing renaissance: Additive manufacturing of high-entropy alloys

被引:0
|
作者
Jinyeon Kim
Akane Wakai
Atieh Moridi
机构
[1] Cornell University,Sibley School of Mechanical and Aerospace Engineering
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The disruptive potential of additive manufacturing (AM) relies on its ability to make customized products with considerable weight savings through geometries that are difficult or impossible to produce by conventional methods. Despite its versatility, applications of AM have been restricted due to the formation of columnar grains, resulting in solidification defects and anisotropy in properties. To achieve fine equiaxed grains in AM, alloy design and solidification conditions have been optimized in various alloy systems. In this review paper, the microstructure of high-entropy alloy (HEA) parts produced by selective laser melting and powder-based directed energy deposition is investigated. Solidification maps based on laser process parameters (as opposed to most commonly used solidification velocity and temperature gradient) are constructed by compiling available literature for single-phase face-centered cubic, body-centered cubic, and multiphase HEAs. These maps could guide printing of HEAs and provide an insight into the design of novel HEAs for AM.
引用
收藏
页码:1963 / 1983
页数:20
相关论文
共 50 条
  • [41] Simultaneously optimizing the strength and ductility of high-entropy alloys by magnetic field-assisted additive manufacturing
    Guo, Shuai
    Sui, Shang
    Wang, Meng
    Wang, Qian
    Tang, Rongji
    Guo, Anfu
    Zhao, Yufan
    Lin, Xin
    Huang, Weidong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 947
  • [42] Predicting the Properties of the Refractory High-Entropy Alloys for Additive Manufacturing-Based Fabrication and Mechatronic Applications
    Buranich, Vladimir
    Rogoz, Vladyslav
    Postolnyi, Bogdan
    Pogrebnjak, Alexander
    PROCEEDINGS OF THE 2020 IEEE 10TH INTERNATIONAL CONFERENCE ON NANOMATERIALS: APPLICATIONS & PROPERTIES (NAP-2020), 2020,
  • [43] Powder plasma arc additive manufacturing of CoCrFeNiWx high-entropy alloys: Microstructure evolution and mechanical properties
    Shen, Qingkai
    Xue, Jiaxiang
    Yu, Xiaoyan
    Zheng, Zehong
    Ou, Ning
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 922
  • [44] Manufacture of WNbMoTa High Performance High-entropy Alloy by Laser Additive Manufacturing
    Li Q.
    Zhang H.
    Li D.
    Wang X.
    Chen Z.
    Huang S.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2019, 55 (15): : 10 - 16
  • [45] Advancements and future prospects of additive manufacturing in high-entropy alloy applications
    Ragunath, S.
    Radhika, N.
    Saleh, Bassiouny
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 997
  • [46] Study on laser shock modulation of melt pool in laser additive manufacturing of FeCoCrNi high-entropy alloys
    Lu, Heng
    Zhang, Xiaohan
    Liu, Jian
    Zhao, Shusen
    Lin, Xuechun
    Li, Hui
    Hu, Yaowu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 925
  • [47] A comparative study on nanoscale mechanical properties of CrMnFeCoNi high-entropy alloys fabricated by casting and additive manufacturing
    Liu, Siqi
    Wan, Di
    Guan, Shuai
    Fu, Yuequn
    Zhang, Zhiliang
    He, Jianying
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 1211 - 1219
  • [48] Study on laser shock modulation of melt pool in laser additive manufacturing of FeCoCrNi high-entropy alloys
    Lu, Heng
    Zhang, Xiaohan
    Liu, Jian
    Zhao, Shusen
    Lin, Xuechun
    Li, Hui
    Hu, Yaowu
    Journal of Alloys and Compounds, 2022, 925
  • [49] On the laser additive manufacturing of high-entropy alloys: A critical assessment of in-situ monitoring techniques and their suitability
    Mahmood, Muhammad Arif
    Alabtah, Fatima Ghassan
    Al-Hamidi, Yasser
    Khraisheh, Marwan
    MATERIALS & DESIGN, 2023, 226
  • [50] Manufacturing of High Entropy Alloys
    Paul D. Jablonski
    Joseph J. Licavoli
    Michael C. Gao
    Jeffrey A. Hawk
    JOM, 2015, 67 : 2278 - 2287