On the solutions of a singular elliptic equation concentrating on two orthogonal spheres

被引:0
|
作者
B. B. Manna
P. N. Srikanth
机构
[1] TIFR CAM,
关键词
35J60; 35J91; 35J20; 35B09; Orthogonal sphere concentration; Morse index;
D O I
暂无
中图分类号
学科分类号
摘要
Let A={x∈R2m:0<a<|x|<b}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A=\{x\in \mathbb{R}^{2m}: 0 < a < |x| < b\}}$$\end{document} be an annulus. We consider the following singularly perturbed elliptic problem on A-ε2Δu+|x|ηu=|x|ηup,inA,u>0,inA,u=0,on∂A,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{lll}-\varepsilon ^2{\Delta u} + |x|^{\eta}u =|x|^{\eta}u^p, \quad {\rm in} A,\\ u > 0, \quad \quad \quad \quad \quad \quad \quad {\rm in} A, \\ u=0, \quad \quad \quad \quad \quad \quad \quad {\rm on}\partial A,\end{array}\right. $$\end{document}where 1<p<m+3m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1 < p < \frac{m+3}{m-1}}$$\end{document}. We shall prove the existence of a positive solution uϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u_\epsilon }$$\end{document} which concentrates on two different orthogonal spheres of dimension (m−1) as ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon \to 0}$$\end{document}. We achieve this by studying a reduced problem on an annular domain in Rm+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{m+1}}$$\end{document} and analysing the profile of a two point concentrating solution in this domain.
引用
收藏
页码:915 / 927
页数:12
相关论文
共 50 条
  • [41] SINGULAR POSITIVE RADIAL SOLUTIONS FOR A GENERAL SEMILINEAR ELLIPTIC EQUATION
    Fen, Yang
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (06) : 2377 - 2387
  • [42] Compatibility conditions for the existence of weak solutions to a singular elliptic equation
    Cong, Shuqiang
    Han, Yuzhu
    BOUNDARY VALUE PROBLEMS, 2015,
  • [43] Partial regularity for solutions of a nonlinear elliptic equation with singular nonlinearity
    Guo, Zongming
    Hou, Songbo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (02) : 806 - 816
  • [44] Existence of Solutions to Elliptic Equation with Exponential Nonlinearities and Singular Term
    Xue Yimin
    Chen Shouting
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2019, 32 (02): : 156 - 170
  • [45] SINGULAR POSITIVE RADIAL SOLUTIONS FOR A GENERAL SEMILINEAR ELLIPTIC EQUATION
    杨芬
    Acta Mathematica Scientia, 2012, 32 (06) : 2377 - 2387
  • [46] Free boundary solutions to a log-singular elliptic equation
    Montenegro, Marcelo
    Lorca, Sebastian
    ASYMPTOTIC ANALYSIS, 2013, 82 (1-2) : 91 - 107
  • [47] Positive versus free boundary solutions to a singular elliptic equation
    Dávila, J
    Montenegro, M
    JOURNAL D ANALYSE MATHEMATIQUE, 2003, 90 (1): : 303 - 335
  • [48] Classification of Stable Solutions to a Fractional Singular Elliptic Equation with Weight
    Anh Tuan Duong
    Vu Trong Luong
    Thi Quynh Nguyen
    Acta Applicandae Mathematicae, 2020, 170 : 579 - 591
  • [49] Positive solutions of fractional elliptic equation with critical and singular nonlinearity
    Giacomoni, Jacques
    Mukherjee, Tuhina
    Sreenadh, Konijeti
    ADVANCES IN NONLINEAR ANALYSIS, 2017, 6 (03) : 327 - 354
  • [50] EXISTENCE AND UNIQUENESS OF SINGULAR SOLUTIONS FOR ELLIPTIC EQUATION ON THE HYPERBOLIC SPACE
    Wu, Yen-Lin
    Chen, Zhi-You
    Chern, Jann-Long
    Kabeya, Yoshitsugu
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (02) : 949 - 960