On the solutions of a singular elliptic equation concentrating on two orthogonal spheres

被引:0
|
作者
B. B. Manna
P. N. Srikanth
机构
[1] TIFR CAM,
关键词
35J60; 35J91; 35J20; 35B09; Orthogonal sphere concentration; Morse index;
D O I
暂无
中图分类号
学科分类号
摘要
Let A={x∈R2m:0<a<|x|<b}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A=\{x\in \mathbb{R}^{2m}: 0 < a < |x| < b\}}$$\end{document} be an annulus. We consider the following singularly perturbed elliptic problem on A-ε2Δu+|x|ηu=|x|ηup,inA,u>0,inA,u=0,on∂A,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{lll}-\varepsilon ^2{\Delta u} + |x|^{\eta}u =|x|^{\eta}u^p, \quad {\rm in} A,\\ u > 0, \quad \quad \quad \quad \quad \quad \quad {\rm in} A, \\ u=0, \quad \quad \quad \quad \quad \quad \quad {\rm on}\partial A,\end{array}\right. $$\end{document}where 1<p<m+3m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1 < p < \frac{m+3}{m-1}}$$\end{document}. We shall prove the existence of a positive solution uϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u_\epsilon }$$\end{document} which concentrates on two different orthogonal spheres of dimension (m−1) as ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon \to 0}$$\end{document}. We achieve this by studying a reduced problem on an annular domain in Rm+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{m+1}}$$\end{document} and analysing the profile of a two point concentrating solution in this domain.
引用
收藏
页码:915 / 927
页数:12
相关论文
共 50 条