Characterization by approximation of homogeneous Besov and Triebel–Lizorkin type spaces

被引:0
|
作者
Madani Moussai
机构
[1] Faculty of Mathematics and Computer Science M. Boudiaf University of M’Sila,Laboratory of Functional Analysis and Geometry of Spaces
来源
Archiv der Mathematik | 2024年 / 122卷
关键词
Besov type space; Triebel–Lizorkin type space; Littlewood–Paley decomposition; Maximal function; 46E35; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
By approximation with sequences in a certain set of distributions modulo polynomials, we characterize the homogeneous Besov and Triebel–Lizorkin type spaces, then we obtain equivalent quasi-norms defined by the infimum on such a set. The same result holds for the classical homogeneous Besov and Triebel–Lizorkin spaces.
引用
收藏
页码:59 / 69
页数:10
相关论文
共 50 条
  • [1] Characterization by approximation of homogeneous Besov and Triebel-Lizorkin type spaces
    Moussai, Madani
    ARCHIV DER MATHEMATIK, 2024, 122 (01) : 59 - 69
  • [2] Difference Characterization of Besov and Triebel–Lizorkin Spaces on Spaces of Homogeneous Type
    Fan Wang
    Ziyi He
    Dachun Yang
    Wen Yuan
    Communications in Mathematics and Statistics, 2022, 10 : 483 - 542
  • [3] Difference Characterization of Besov and Triebel-Lizorkin Spaces on Spaces of Homogeneous Type
    Wang, Fan
    He, Ziyi
    Yang, Dachun
    Yuan, Wen
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2022, 10 (03) : 483 - 542
  • [4] Pointwise characterization of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type
    Alvarado, Ryan
    Wang, Fan
    Yang, Dachun
    Yuan, Wen
    STUDIA MATHEMATICA, 2023, 268 (02) : 121 - 166
  • [5] Wavelet characterization of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type and its applications
    He, Ziyi
    Wang, Fan
    Yang, Dachun
    Yuan, Wen
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 54 (54) : 176 - 226
  • [6] Some new spaces of Besov and Triebel-Lizorkin type on homogeneous spaces
    Han, YS
    Yang, DC
    STUDIA MATHEMATICA, 2003, 156 (01) : 67 - 97
  • [7] Embedding theorems of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type
    Yang, DC
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (02): : 187 - 199
  • [8] Embedding theorems of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type
    Dachun Yang
    Science in China Series A: Mathematics, 2003, 46 : 187 - 199
  • [9] Embedding theorems of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type
    杨大春
    Science China Mathematics, 2003, (02) : 187 - 199
  • [10] Riesz Potentials in Besov and Triebel–Lizorkin Spaces over Spaces of Homogeneous Type
    Dachun Yang
    Potential Analysis, 2003, 19 : 193 - 210