Sparse online principal component analysis for parameter estimation in factor model

被引:0
|
作者
Guangbao Guo
Chunjie Wei
Guoqi Qian
机构
[1] Shandong University of Technology,School of Mathematics and Statistics
[2] University of Melbourne,School of Mathematics and Statistics
来源
Computational Statistics | 2023年 / 38卷
关键词
Factor model; Parament estimation; Principal component method; Sparse; Online learning;
D O I
暂无
中图分类号
学科分类号
摘要
Factor model has the capacity of reducing redundant information in real data analysis. Note that sparse principal component (SPC) method is developed to obtain sparse solutions from the model, online principal component (OPC) method is used to handle with online dimension reduction problem. It is worth considering how to obtain a sparse solution with online learning. In this paper we propose a novel sparse online principal component (SOPC) method for sparse parameter estimation in factor model, where we combine the advantages of the SPC and OPC methods in estimating the loading matrix and the idiosyncratic variance matrix. By integrating sparse modelling with online update, the SOPC is capable of finding the sparse solution through iterative online updating, leading to a consistent and easily interpretable solution. Stability and sensitivity of the SOPC are assessed through a simulation study. The method is then applied to analyze two real data sets concerning drug efficacy and human activity recognition.
引用
收藏
页码:1095 / 1116
页数:21
相关论文
共 50 条
  • [21] Parameter estimation of linear motion blur based on principal component analysis
    Li, Hai-Sen
    Zhang, Yan-Ning
    Yao, Rui
    Sun, Jin-Qiu
    Li, H.-S. (haisenli.nwpu@gmail.com), 1600, Chinese Academy of Sciences (21): : 2656 - 2663
  • [22] Supervised Sparse and Functional Principal Component Analysis
    Li, Gen
    Shen, Haipeng
    Huang, Jianhua Z.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2016, 25 (03) : 859 - 878
  • [23] Principal Component Analysis With Sparse Fused Loadings
    Guo, Jian
    James, Gareth
    Levina, Elizaveta
    Michailidis, George
    Zhu, Ji
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (04) : 930 - 946
  • [24] On General Adaptive Sparse Principal Component Analysis
    Leng, Chenlei
    Wang, Hansheng
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (01) : 201 - 215
  • [25] Multilevel sparse functional principal component analysis
    Di, Chongzhi
    Crainiceanu, Ciprian M.
    Jank, Wolfgang S.
    STAT, 2014, 3 (01): : 126 - 143
  • [26] Sparse principal component analysis by choice of norm
    Qi, Xin
    Luo, Ruiyan
    Zhao, Hongyu
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 114 : 127 - 160
  • [27] Optimal solutions for sparse principal component analysis
    d'Aspremont, Alexandre
    Bach, Francis
    El Ghaoui, Laurent
    JOURNAL OF MACHINE LEARNING RESEARCH, 2008, 9 : 1269 - 1294
  • [28] Approximation bounds for sparse principal component analysis
    d'Aspremont, Alexandre
    Bach, Francis
    El Ghaoui, Laurent
    MATHEMATICAL PROGRAMMING, 2014, 148 (1-2) : 89 - 110
  • [29] Exactly Uncorrelated Sparse Principal Component Analysis
    Kwon, Oh-Ran
    Lu, Zhaosong
    Zou, Hui
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (01) : 231 - 241
  • [30] Stochastic convex sparse principal component analysis
    Baytas, Inci M.
    Lin, Kaixiang
    Wang, Fei
    Jain, Anil K.
    Zhou, Jiayu
    EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY, 2016, (01)