The geometric stricture of the parameter space of the three-stage symplectic Runge-Kutta methods

被引:0
|
作者
Elenin G.G. [1 ]
Shlyakhov P.I. [1 ]
机构
[1] Moscow State University, Moscow
基金
俄罗斯基础研究基金会;
关键词
order of approximation; structure of the parameter space; symplectic Runge-Kutta methods;
D O I
10.1134/S2070048211060020
中图分类号
学科分类号
摘要
The geometric structure of the parameter space of the three-stage symplectic Runge-Kutta methods is established. The elements of the structure are geometric places of points corresponding to the methods of different orders of approximation. © 2011, Pleiades Publishing, Ltd.
引用
收藏
页码:680 / 689
页数:9
相关论文
共 50 条
  • [41] Construction of Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods from Partitioned Runge-Kutta Methods
    Monovasilis, T.
    Kalogiratou, Z.
    Simos, T. E.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 2271 - 2285
  • [42] Diagonally Implicit Symplectic Runge-Kutta Methods with Special Properties
    Kalogiratou, Z.
    Monovasilis, Th.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1387 - 1390
  • [43] A family of trigonometrically fitted partitioned Runge-Kutta symplectic methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (01) : 91 - 96
  • [44] Application of symplectic partitioned Runge-Kutta methods to Hamiltonian problems
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    ADVANCES IN COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2005, VOLS 4 A & 4 B, 2005, 4A-4B : 417 - 420
  • [45] THE NONEXISTENCE OF SYMPLECTIC MULTI-DERIVATIVE RUNGE-KUTTA METHODS
    HAIRER, E
    MURUA, A
    SANZSERNA, JM
    BIT, 1994, 34 (01): : 80 - 87
  • [47] Positivity of Runge-Kutta and diagonally split Runge-Kutta methods
    Horvath, Z
    APPLIED NUMERICAL MATHEMATICS, 1998, 28 (2-4) : 309 - 326
  • [48] A functionally fitted three-stage explicit singly diagonally implicit Runge-Kutta method
    Kazufumi Ozawa
    Japan Journal of Industrial and Applied Mathematics, 2005, 22 : 403 - 427
  • [49] THE RUNGE-KUTTA METHODS
    THOMAS, B
    BYTE, 1986, 11 (04): : 191 - &
  • [50] A functionally fitted three-stage explicit singly diagonally implicit Runge-Kutta method
    Ozawa, K
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2005, 22 (03) : 403 - 427