Global stability of solutions with discontinuous initial data containing vacuum states for the isentropic Euler equations

被引:0
作者
Yachun Li
机构
[1] Department of Mathematics,
[2] Shanghai Jiaotong University,undefined
来源
Zeitschrift für angewandte Mathematik und Physik ZAMP | 2004年 / 55卷
关键词
Primary 35B40; 35A05; 76N15; Secondary 35B35; 35L65; Isentropic Euler equations; entropy solutions; continuous solutions; discontinuous initial data; global stability; uniqueness;
D O I
暂无
中图分类号
学科分类号
摘要
The global stability of Lipschitz continuous solutions with discontinuous initial data is established in a broad class of entropy solutions in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$L^\infty$$ \end{document} containing vacuum states. In particular, the uniqueness of Lipschitz solutions with discontinuous initial data is obtained in the broad class of entropy solutions in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$L^\infty$$ \end{document}.
引用
收藏
页码:48 / 62
页数:14
相关论文
empty
未找到相关数据