fMRI functional connectivity analysis via kernel graph in Alzheimer’s disease

被引:0
作者
Hessam Ahmadi
Emad Fatemizadeh
Ali Motie-Nasrabadi
机构
[1] Islamic Azad University,Department of Biomedical Engineering, Science and Research Branch
[2] Sharif University of Technology,School of Electrical Engineering
[3] Shahed University,Biomedical Engineering Department
来源
Signal, Image and Video Processing | 2021年 / 15卷
关键词
Alzheimer’s disease; fMRI; Pearson correlation; Kernel trick; Brain networks;
D O I
暂无
中图分类号
学科分类号
摘要
Functional magnetic resonance imaging (fMRI) is an imaging tool that is used to analyze the brain’s functions. Brain functional connectivity analysis based on fMRI signals often calculated correlations among time series in different areas of the brain. For FC analysis most prior research works generate the brain graphs based on linear correlations, however, the nonlinear behavior of the brain can lower the accuracy of such graphs. Usually, the Pearson correlation coefficient is used which has limitations in revealing nonlinear relationships. One of the proper methods for nonlinear analysis is the Kernel trick. This method maps the data into a high dimensional space and calculates the linear relations in a new space that is equivalent to the nonlinear relation in primary space. Also, it does not need to know the nonlinear dependency in the initial space. In this study, after constructing weighted undirected graphs of fMRI data based on AAL atlas, different kernels have been applied to calculate the kernelized correlation in normal and Alzheimer’s subjects. The determination of parameters has been done by two statistical methods. To compare the performance of Kernel correlation analysis, the global features of graphs are computed. Also, the non-parametric permutation test shows that kernelized correlation demonstrates a more significant statistical difference between groups in comparison to the simple linear correlation. In different kernel analysis, the best performance was for the third-degree polynomial kernel. The features strength, characteristic path length, local efficiency, transitivity, modularity, and small-worldness were significantly different for P value 0.01. Besides, comparison to random graphs and further analysis in the Occipital lobe confirmed the results.
引用
收藏
页码:715 / 723
页数:8
相关论文
共 50 条
[21]   Abnormal characterization of dynamic functional connectivity in Alzheimer's disease [J].
Zhao, Cui ;
Huang, Wei-Jie ;
Feng, Feng ;
Zhou, Bo ;
Yao, Hong-Xiang ;
Guo, Yan-E ;
Wang, Pan ;
Wang, Lu-Ning ;
Shu, Ni ;
Zhang, Xi .
NEURAL REGENERATION RESEARCH, 2022, 17 (09) :2014-2021
[22]   Functional connectivity tracks clinical deterioration in Alzheimer's disease [J].
Damoiseaux, Jessica S. ;
Prater, Katherine E. ;
Miller, Bruce L. ;
Greicius, Michael D. .
NEUROBIOLOGY OF AGING, 2012, 33 (04)
[23]   Measures of the brain functional network that correlate with Alzheimer's neuropsychological test scores: An fMRI and graph analysis study [J].
Golbabaei, Soroosh ;
Dadashi, Amin ;
Soltanian-Zadeh, Hamid .
2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, :5554-5557
[24]   Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer's disease [J].
Zhang, Hong-Ying ;
Wang, Shi-Jie ;
Xing, Jiong ;
Liu, Bin ;
Ma, Zhan-Long ;
Yang, Ming ;
Zhang, Zhi-Jun ;
Teng, Gao-Jun .
BEHAVIOURAL BRAIN RESEARCH, 2009, 197 (01) :103-108
[25]   Functional connectivity between white matter and gray matter based on fMRI for Alzheimer's disease classification [J].
Zhao, Jie ;
Ding, Xuetong ;
Du, Yuhang ;
Wang, Xuehu ;
Men, Guozun .
BRAIN AND BEHAVIOR, 2019, 9 (10)
[26]   Recognition of personally familiar faces and functional connectivity in Alzheimer's disease [J].
Kurth, Sophie ;
Moyse, Evelyne ;
Bahri, Mohamed A. ;
Salmon, Eric ;
Bastin, Christine .
CORTEX, 2015, 67 :59-73
[27]   Brain Structural and Functional Connectivity and the Progression of Neuropathology in Alzheimer's Disease [J].
Matthews, Paul M. ;
Filippini, Nicola ;
Douaud, Gwenaelle .
JOURNAL OF ALZHEIMERS DISEASE, 2013, 33 :S163-S172
[28]   Impact of Alzheimer's Disease on the Functional Connectivity of Spontaneous Brain Activity [J].
Sorg, Christian ;
Riedl, Valentin ;
Perneczky, Robert ;
Kurz, Alexander ;
Wohlschlaeger, Afra M. .
CURRENT ALZHEIMER RESEARCH, 2009, 6 (06) :541-553
[29]   Understanding Graph Isomorphism Network for rs-fMRI Functional Connectivity Analysis [J].
Kim, Byung-Hoon ;
Ye, Jong Chul .
FRONTIERS IN NEUROSCIENCE, 2020, 14
[30]   Reproducibility of EEG functional connectivity in Alzheimer's disease [J].
Briels, Casper T. ;
Schoonhoven, Deborah N. ;
Stam, Cornelis J. ;
de Waal, Hanneke ;
Scheltens, Philip ;
Gouw, Alida A. .
ALZHEIMERS RESEARCH & THERAPY, 2020, 12 (01)