Power boundedness in the Fourier and Fourier–Stieltjes algebras on homogeneous spaces

被引:0
作者
N. Shravan Kumar
机构
[1] Indian Institute of Technology Delhi,Department of Mathematics
来源
Periodica Mathematica Hungarica | 2016年 / 73卷
关键词
Homogeneous space; Fourier algebra; Fourier–Stieltjes algebra; Spectral synthesis; Coset ring; Power bounded element; Primary 43A30; 43A45; 43A85; Secondary 46J10; 46M18;
D O I
暂无
中图分类号
学科分类号
摘要
We study power boundedness in the Fourier and Fourier–Stieltjes algebras, [inline-graphic not available: see fulltext] and [inline-graphic not available: see fulltext] of a homogeneous space [inline-graphic not available: see fulltext] The main results characterizes when all elements with spectral radius at most one, in any of these algebras, are power bounded.
引用
收藏
页码:157 / 164
页数:7
相关论文
共 17 条
[1]  
Schreiber BM(1970)Measures with bounded convolution powers Trans. Am. Math. Soc. 151 405-431
[2]  
Kaniuth E(2011)Power boundedness in Fourier and Fourier–Stieltjes algebras and other commutative Banach algebras J. Funct. Anal. 260 2366-2386
[3]  
Lau AT(1964)L’algèbre de Fourier d’un groupe localement compact Bull. Soc. Math. France 92 181-236
[4]  
Ülger A(2013)Ideals with bounded approximate identities in the Fourier algebras on homogeneous spaces Indag. Math. 24 1-14
[5]  
Eymard P(1998)Fourier analysis on coset spaces Rocky Mt J. Math. 28 173-190
[6]  
Shravan Kumar N(1970)On the coset ring and strong Ditkin sets Pac. J. Math. 33 805-812
[7]  
Forrest BE(1992)Amenability and ideals in J. Aust. Math. Soc. (Ser. A) 53 143-155
[8]  
Schreiber BM(2010)Multipliers of commutative Banach algebras, power boundedness and Fourier–Stieltjes algebras J. Lond. Math. Soc. 81 255-275
[9]  
Forrest BE(2003)A characterization of the closed ideals of the Fourier–Stieltjes algebra J. Funct. Anal. 205 90-106
[10]  
Kaniuth E(2011) of a locally compact group Stud. Math. 203 291-307