Hierarchical deep network with uncertainty-aware semi-supervised learning for vessel segmentation

被引:0
作者
Chenxin Li
Wenao Ma
Liyan Sun
Xinghao Ding
Yue Huang
Guisheng Wang
Yizhou Yu
机构
[1] Xiamen University,School of Informatics
[2] The Third Medical Centre,Department of Radiology
[3] Chinese PLA General Hospital,undefined
[4] Deepwise AI Laboratory,undefined
来源
Neural Computing and Applications | 2022年 / 34卷
关键词
Vessel segmentation; Hierarchical deep network; Attention mechanism; Semi-supervised learning;
D O I
暂无
中图分类号
学科分类号
摘要
The analysis of organ vessels is essential for computer-aided diagnosis and surgical planning. But it is not an easy task since the fine-detailed connected regions of organ vessel bring a lot of ambiguity in vessel segmentation and sub-type recognition, especially for the low-contrast capillary regions. Furthermore, recent two-staged approaches would accumulate and even amplify these inaccuracies from the first-stage whole vessel segmentation into the second-stage sub-type vessel pixel-wise classification. Moreover, the scarcity of manual annotation in organ vessels poses another challenge. In this paper, to address the above issues, we propose a hierarchical deep network where an attention mechanism localizes the low-contrast capillary regions guided by the whole vessels, and enhance the spatial activation in those areas for the sub-type vessels. In addition, we propose an uncertainty-aware semi-supervised training framework to alleviate the annotation-hungry limitation of deep models. The proposed method achieves the state-of-the-art performance in the benchmarks of both retinal artery/vein segmentation in fundus images and liver portal/hepatic vessel segmentation in CT images. Our implementation is publicly available at https://github.com/XGGNet/Vessel-Seg.
引用
收藏
页码:3151 / 3164
页数:13
相关论文
共 50 条
  • [1] Hierarchical deep network with uncertainty-aware semi-supervised learning for vessel segmentation
    Li, Chenxin
    Ma, Wenao
    Sun, Liyan
    Ding, Xinghao
    Huang, Yue
    Wang, Guisheng
    Yu, Yizhou
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (04) : 3151 - 3164
  • [2] Uncertainty-aware consistency learning for semi-supervised medical image segmentation
    Dong, Min
    Yang, Ating
    Wang, Zhenhang
    Li, Dezhen
    Yang, Jing
    Zhao, Rongchang
    KNOWLEDGE-BASED SYSTEMS, 2025, 309
  • [3] Uncertainty-aware semi-supervised few shot segmentation
    Kim, Soopil
    Chikontwe, Philip
    An, Sion
    Park, Sang Hyun
    PATTERN RECOGNITION, 2023, 137
  • [4] Uncertainty-aware deep co-training for semi-supervised medical image segmentation
    Zheng, Xu
    Fu, Chong
    Xie, Haoyu
    Chen, Jialei
    Wang, Xingwei
    Sham, Chiu-Wing
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 149
  • [5] Uncertainty-aware representation calibration for semi-supervised medical imaging segmentation
    Wu, Yuanchen
    Li, Xiaoqiang
    Zhou, Yue
    NEUROCOMPUTING, 2024, 595
  • [6] Uncertainty-Aware Contrastive Learning for semi-supervised named entity recognition
    Yang, Kang
    Yang, Zhiwei
    Zhao, Songwei
    Yang, Zhejian
    Zhang, Sinuo
    Chen, Hechang
    KNOWLEDGE-BASED SYSTEMS, 2024, 296
  • [7] Evidence-based uncertainty-aware semi-supervised medical image segmentation
    Chen, Yingyu
    Yang, Ziyuan
    Shen, Chenyu
    Wang, Zhiwen
    Zhang, Zhongzhou
    Qin, Yang
    Wei, Xin
    Lu, Jingfeng
    Liu, Yan
    Zhang, Yi
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 170
  • [8] UPL-Net: Uncertainty-aware prompt learning network for semi-supervised action recognition
    Yang, Shu
    Li, Ya-Li
    Wang, Shengjin
    NEUROCOMPUTING, 2025, 619
  • [9] Uncertainty-aware pseudo-label and consistency for semi-supervised medical image segmentation
    Lu, Liyun
    Yin, Mengxiao
    Fu, Liyao
    Yang, Feng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79
  • [10] Uncertainty-aware and dynamically-mixed pseudo-labels for semi-supervised defect segmentation
    Sime, Dejene M.
    Wang, Guotai
    Zeng, Zhi
    Peng, Bei
    COMPUTERS IN INDUSTRY, 2023, 152