Statistical Estimates of Lidar Signals Reflected from the Ocean Bottom

被引:0
作者
V. S. Shamanaev
A. I. Potekaev
A. A. Lisenko
M. G. Krekov
机构
[1] V. E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences,
[2] National Research Tomsk State University,undefined
[3] V. D. Kuznetsov Siberian Physical-Technical Institute at Tomsk State University,undefined
来源
Russian Physics Journal | 2017年 / 59卷
关键词
lidar; ocean optics; multiple scattering of light; ocean depth;
D O I
暂无
中图分类号
学科分类号
摘要
The Monte Carlo method is used to solve the nonstationary equation of laser sensing of an optically dense, complex, multicomponent aqueous medium with allowance for the water–air interface, the contribution of multiple scattering of radiation by the water column, and reflection of the signal from the bottom. As a result, we have obtained dependences of the return signal of a monostatic lidar from the water column and the surface microwaves for various field-of-view angles of the receiver. The results of our calculations show that a lidar detection depth of the bottom up to 50 m is achievable for water optical thicknesses up to 3.5–4. When sensing the bottom up to the limiting depth of 50 m under conditions of very transparent water and Fresnel reflection from its surface, the dynamic range of the signal from the water column reaches 7–9 orders of magnitude.
引用
收藏
页码:2034 / 2040
页数:6
相关论文
共 40 条
  • [31] ICESat-2 and ocean particulates: A roadmap for calculating Kd from space-based lidar photon profiles
    Eidam, E. F.
    Bisson, K.
    Wang, C.
    Walker, C.
    Gibbons, A.
    REMOTE SENSING OF ENVIRONMENT, 2024, 311
  • [32] Statistical Characteristics of Cloud Heights over Lanzhou, China from Multiple Years of Micro-Pulse Lidar Observation
    Cao, Xianjie
    Lu, Gefei
    Li, Mengqi
    Wang, Jiayun
    ATMOSPHERE, 2021, 12 (11)
  • [33] Structural Features of the Planetary Boundary Layer in the Continent-Ocean Transition Zone As Inferred from Data of Lidar and Meteorological Soundings
    Bukin, O. A.
    Shmirko, K. A.
    Pavlov, A. N.
    Stolyarchuk, S. Yu.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2008, 44 (06) : 763 - 767
  • [34] Structural features of the planetary boundary layer in the continent-ocean transition zone as inferred from data of lidar and meteorological soundings
    O. A. Bukin
    K. A. Shmirko
    A. N. Pavlov
    S. Yu. Stolyarchuk
    Izvestiya, Atmospheric and Oceanic Physics, 2008, 44 : 763 - 767
  • [35] Allometric equation choice impacts lidar-based forest biomass estimates: A case study from the Sierra National Forest, CA
    Zhao, Feng
    Guo, Qinghua
    Kelly, Maggi
    AGRICULTURAL AND FOREST METEOROLOGY, 2012, 165 : 64 - 72
  • [36] New opportunities for low-cost LiDAR-derived snow depth estimates from a consumer drone-mounted smartphone
    King, Fraser
    Kelly, Richard
    Fletcher, Christopher G.
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2023, 207
  • [37] Aerosol Retrieval from Dual-wavelength Polarization Lidar Measurements over Tropical Pacific Ocean and Validation of a Global Aerosol Transport Model
    Nishizawa, T.
    Sugimoto, N.
    Matsui, I.
    Shimizu, A.
    Takemura, T.
    Okamoto, H.
    CURRENT PROBLEMS IN ATMOSPHERIC RADIATION (IRS 2008), 2009, 1100 : 303 - 306
  • [38] Research ReportDiurnal global ocean surface pCO2 and air-sea CO2 flux reconstructed from spaceborne LiDAR data
    Zhang, Siqi
    Chen, Peng
    Hu, Yongxiang
    Zhang, Zhenhua
    Jamet, Cedric
    Lu, Xiaomei
    Dionisi, Davide
    Pan, Delu
    PNAS NEXUS, 2023, 3 (01):
  • [39] Evaluation of a Statistical Approach for Extracting Shallow Water Bathymetry Signals from ICESat-2 ATL03 Photon Data
    Ranndal, Heidi
    Christiansen, Philip Sigaard
    Kliving, Pernille
    Andersen, Ole Baltazar
    Nielsen, Karina
    REMOTE SENSING, 2021, 13 (17)
  • [40] Comparing yield estimates derived from LiDAR and aerial photogrammetric point-cloud data with cut-to-length harvester data in a Pinus radiata plantation in Tasmania
    Caccamo, G.
    Iqbal, I. A.
    Osborn, J.
    Bi, H.
    Arkley, K.
    Melville, G.
    Aurik, D.
    Stone, C.
    AUSTRALIAN FORESTRY, 2018, 81 (03) : 131 - 141