Scattered manifold-valued data approximation

被引:0
|
作者
Philipp Grohs
Markus Sprecher
Thomas Yu
机构
[1] Universität Wien,Fakultät für Mathematik
[2] ETH Zürich,Seminar for Applied Mathematics
[3] Drexel University,Department of Mathematics
来源
Numerische Mathematik | 2017年 / 135卷
关键词
Riemannian data; Manifold-valued function; Approximation; Scattered data; Model reduction; Primary 65D07; Secondary 65D15; 53B20; 41AXX; 35RXX;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of approximating a function f from an Euclidean domain to a manifold M by scattered samples (f(ξi))i∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(f(\xi _i))_{i\in \mathcal {I}}$$\end{document}, where the data sites (ξi)i∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\xi _i)_{i\in \mathcal {I}}$$\end{document} are assumed to be locally close but can otherwise be far apart points scattered throughout the domain. We introduce a natural approximant based on combining the moving least square method and the Karcher mean. We prove that the proposed approximant inherits the accuracy order and the smoothness from its linear counterpart. The analysis also tells us that the use of Karcher’s mean (dependent on a Riemannian metric and the associated exponential map) is inessential and one can replace it by a more general notion of ‘center of mass’ based on a general retraction on the manifold. Consequently, we can substitute the Karcher mean by a more computationally efficient mean. We illustrate our work with numerical results which confirm our theoretical findings.
引用
收藏
页码:987 / 1010
页数:23
相关论文
共 50 条
  • [1] Scattered manifold-valued data approximation
    Grohs, Philipp
    Sprecher, Markus
    Yu, Thomas
    NUMERISCHE MATHEMATIK, 2017, 135 (04) : 987 - 1010
  • [2] Manifold-Valued Holomorphic Approximation
    Stout, Edgar Lee
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2011, 54 (02): : 370 - 380
  • [3] Sets of Approximation and Interpolation in ℂ for Manifold-Valued Maps
    Debraj Chakrabarti
    Journal of Geometric Analysis, 2008, 18 : 720 - 739
  • [4] Approximation order equivalence properties of manifold-valued data subdivision schemes
    Xie, Gang
    Yu, Thomas P-Y.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (02) : 687 - 700
  • [5] A Graph Framework for Manifold-Valued Data
    Bergmann, Ronny
    Tenbrinck, Daniel
    SIAM JOURNAL ON IMAGING SCIENCES, 2018, 11 (01): : 325 - 360
  • [6] Interpolatory wavelets for manifold-valued data
    Grohs, Philipp
    Wallner, Johannes
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 27 (03) : 325 - 333
  • [7] Statistical Learning on Manifold-Valued Data
    Kuleshov, Alexander
    Bernstein, Alexander
    MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION (MLDM 2016), 2016, 9729 : 311 - 325
  • [8] Multiscale representations for manifold-valued data
    Rahman, IU
    Drori, I
    Stodden, VC
    Donoho, DL
    Schröder, P
    MULTISCALE MODELING & SIMULATION, 2005, 4 (04): : 1201 - 1232
  • [9] Hermite multiwavelets for manifold-valued data
    Cotronei, Mariantonia
    Moosmuller, Caroline
    Sauer, Tomas
    Sissouno, Nada
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (03)
  • [10] Hermite multiwavelets for manifold-valued data
    Mariantonia Cotronei
    Caroline Moosmüller
    Tomas Sauer
    Nada Sissouno
    Advances in Computational Mathematics, 2023, 49