The Structure of a Quantized Vortex in a Bose-Einstein Condensate

被引:0
作者
Jian-Ming Tang
机构
[1] University of Washington,Department of Physics
来源
Journal of Low Temperature Physics | 2000年 / 121卷
关键词
Vortex; Gaussian Distribution; Wave Function; Linear Combination; Vorticity;
D O I
暂无
中图分类号
学科分类号
摘要
The structure of a quantized vortex in a Bose-Einstein Condensate is investigated using the projection method developed by Peierls, Yoccoz, and Thouless. This method was invented to describe the collective motion of a many-body system beyond the mean-field approximation. The quantum fluctuation has been properly built into the variational wave function, and a vortex is described by a linear combination of Feynman wave functions weighted by a Gaussian distribution in their center positions. In contrast to the solution of the Gross-Pitaevskii equation, the particle density is finite at the vortex axis and the vorticity is distributed in the core region.
引用
收藏
页码:287 / 292
页数:5
相关论文
共 52 条
[1]  
Anderson M. H.(1995)undefined Science 269 198-undefined
[2]  
Ensher J. R.(1995)undefined Phys. Rev. Lett. 75 1687-undefined
[3]  
Matthews M. R.(1995)undefined Phys. Rev. Lett. 75 3969-undefined
[4]  
Wieman C. E.(1998)undefined Phys. Rev. Lett. 81 3811-undefined
[5]  
Cornell E. A.(1999)undefined Nature(London) 401 568-undefined
[6]  
Bradley C. C.(1999)undefined Phys. Rev. Lett. 83 2498-undefined
[7]  
Sackett C. A.(2000)undefined Phys. Rev. Lett. 84 806-undefined
[8]  
Tollett J. J.(1961)undefined Nuouo Cimento 20 454-undefined
[9]  
Hulet R. G.(1961)undefined Zh. Eksp. Teor. Fzz. 40 646-undefined
[10]  
Davis K. B.(1997)undefined Phys. Rev. A 55 3645-undefined