Steklov Eigenvalues and Quasiconformal Maps of Simply Connected Planar Domains

被引:0
|
作者
A. Girouard
R. S. Laugesen
B. A. Siudeja
机构
[1] Université Laval,Department de Mathematiques et Statistique
[2] University of Illinois,Department of Mathematics
[3] University of Oregon,Department of Mathematics
来源
Archive for Rational Mechanics and Analysis | 2016年 / 219卷
关键词
Unit Disk; Trial Function; Isoperimetric Inequality; Regular Polygon; Geometric Quantity;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate isoperimetric upper bounds for sums of consecutive Steklov eigenvalues of planar domains. The normalization involves the perimeter and scale-invariant geometric factors which measure deviation of the domain from roundness. We prove sharp upper bounds for both starlike and simply connected domains for a large collection of spectral functionals including partial sums of the zeta function and heat trace. The proofs rely on a special class of quasiconformal mappings.
引用
收藏
页码:903 / 936
页数:33
相关论文
共 50 条