Frequency polygons for continuous random fields

被引:4
作者
Bensaïd N. [1 ]
Dabo-Niang S. [1 ]
机构
[1] Laboratoire EQUIPPE, Université Charles De Gaulle, Lille 3, 59653 Villeneuve d'Ascq Cedex, maison de la recherche,domaine du pont de bois
关键词
Density estimation; Frequency polygons; Mixing sample; Random field; Spatial data;
D O I
10.1007/s11203-009-9038-7
中图分类号
学科分类号
摘要
We study the frequency polygon investigated by Scott (J Am Stat Assoc 80: 348-354, 1985) as a nonparametric density estimate for a continuous and stationary real random field (Xt,tεℝN). We establish the asymptotic expressions for the integrated pointwise squared bias and the integrated pointwise squared variance of the estimate when the field is observed over a rectangular domain of ℝN. Under mild mixing conditions, we show that the estimate achieves the same rate of convergence to zero of the integrated mean squared error as kernel estimators and it can also attain the optimal uniform strong rate of convergence, for appropriate choices of the bin widths. © Springer Science+Business Media B.V. 2009.
引用
收藏
页码:55 / 80
页数:25
相关论文
共 47 条
[1]  
Anselin L., Florax R.J.G.M., New Directions in Spatial Econometrics, (1995)
[2]  
Banon G., Nguyen H.T., Sur l'estimation récurrente de la densité pour un processus de Markov, C R Acad Sci Paris I, 286, pp. 691-694, (1978)
[3]  
Beirlant J., Berlinet A., Gyorfi L., On piecewise linear density estimators, Stat Neerl, 53, 3, pp. 287-308, (1999)
[4]  
Biau G., Spatial Kernel density estimation, Math Methods Stat, 12, pp. 371-390, (2003)
[5]  
Biau G., Cadre B., Nonparametric spatial prediction, Stat Inference Stoch Process, 7, pp. 327-349, (2004)
[6]  
Blanke D., Estimation de la densité pour des trajectoires non directement observables, Ann Isup, 40, pp. 21-36, (1996)
[7]  
Blanke D., Bosq D., A family of minimax rates for density estimators in continous time, Stoch Anal Appl, 18, pp. 871-900, (2000)
[8]  
Blanke D., Pumo B., Optimal sampling for density estimation in continuous time, J Time Ser Anal, 24, 1, pp. 1-23, (2003)
[9]  
Bosq D., Parametric rates of nonparametric estimators and predictors for continuous time processes, Ann Stat, 25, pp. 982-1000, (1997)
[10]  
Nonparametric Statistics for Stochastic Processes-Estimation and Prediction, Lecture Notes in Statistics, (1998)