A matricial computation of rational quadrature formulas on the unit circle

被引:0
作者
Adhemar Bultheel
Maria-José Cantero
机构
[1] K.U. Leuven,Department of Computer Science
[2] University of Zaragoza,Department of Applied Mathematics
来源
Numerical Algorithms | 2009年 / 52卷
关键词
Orthogonal rational functions; Para-orthogonal rational functions; Szegő quadrature formulas; Möbius transformations; 42C05;
D O I
暂无
中图分类号
学科分类号
摘要
A matricial computation of quadrature formulas for orthogonal rational functions on the unit circle, is presented in this paper. The nodes of these quadrature formulas are the zeros of the para-orthogonal rational functions with poles in the exterior of the unit circle and the weights are given by the corresponding Christoffel numbers. We show how these nodes can be obtained as the eigenvalues of the operator Möbius transformations of Hessenberg matrices and also as the eigenvalues of the operator Möbius transformations of five-diagonal matrices, recently obtained. We illustrate the preceding results with some numerical examples.
引用
收藏
页码:47 / 68
页数:21
相关论文
共 39 条
[1]  
Bultheel A.(1992)Orthogonal rational functions and quadrature on the unit circle Numer. Algorithms 3 105-116
[2]  
González-Vera P.(1994)Quadrature formulas on the unit circle based on rational functions J. Comput. Appl. Math. 50 159-170
[3]  
Hendriksen E.(1998)Orthogonal rational functions and interpolatory product rules on the unit circle. II. Quadrature and convergence Analysis 18 185-200
[4]  
Njåstad O.(2004)Orthogonal bases in discrete least squares rational approximation J. Comput. Appl. Math. 164–165 175-194
[5]  
Bultheel A.(2008)A matrix approach to the computation of quadrature formulas on the interval Appl. Numer. Math. 58 296-318
[6]  
González-Vera P.(2003)Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle Linear Algebra Appl. 362 29-56
[7]  
Hendriksen E.(2007)Structured eigenvalue problems for rational gauss quadrature Numer. Algorithms 45 195-204
[8]  
Njåstad O.(1970)On the construction of Gaussian quadrature rules from modified moments Math. Comput. 24 245-260
[9]  
Bultheel A.(1982)On generating orthogonal polynomials SIAM J. Sci. Statist. Comput. 3 289-317
[10]  
González-Vera P.(2005)Quasiseparable structures of companion pencils under the qz-algorithm Calcolo 42 215-226