COVID-19 severity detection using machine learning techniques from CT-images

被引:0
|
作者
A. L. Aswathy
Hareendran S. Anand
S. S. Vinod Chandra
机构
[1] University of Kerala,Department of Computer Science
[2] Muthoot Institute of Technology and Science,Department of Computer Science and Engineering
来源
Evolutionary Intelligence | 2023年 / 16卷
关键词
Computed tomography; DenseNet-201; ResNet-50; AlexNet; Transfer learning; Neural network;
D O I
暂无
中图分类号
学科分类号
摘要
COVID-19 has spread worldwide and the World Health Organization was forced to list it as a Public Health Emergency of International Concern. The disease has severely impacted most of the people because it affects the lung and causes severe breathing problems and lung infections. Differentiating other lung ailments from COVID-19 infection and determining the severity is a challenging process. Doctors can give vital life-saving services and support patients’ lives only if the severity of their condition is determined. This work proposed a two-step approach for detecting the COVID-19 infection from the lung CT images and determining the severity of the patient’s illness. To extract the features, pre-trained models are used, and by analyzing them, integrated the features from AlexNet, DenseNet-201, and ResNet-50. The COVID-19 detection is carried out by using an Artificial Neural Network(ANN) model. After the COVID-19 infection has been identified, severity detection is performed. For that, image features are combined with the clinical data and is classified as High, Moderate, Low with the help of Cubic Support Vector Machine(SVM). By considering three severity levels, patients with high risk can be given more attention. The method was tested on a publicly available dataset and obtained an accuracy of 92.0%, sensitivity of 96.0%, and an F1-Score of 91.44% for COVID-19 detection and got overall accuracy of 90.0% for COVID-19 severity detection for three classes.
引用
收藏
页码:1423 / 1431
页数:8
相关论文
共 50 条
  • [21] Prediction of COVID-19 severity using machine learning
    Karaduzovic-Hadziabdic, Kanita
    Adilovic, Muhamed
    Zhang, Lu
    Lumley, Andrew, I
    Shah, Pranay
    Shoaib, Muhammad
    Satagopam, Venkata
    Srivastava, Prashant Kumar
    Emanueli, Costanza
    Greco, Simona
    Made, Alisia
    Padro, Teresa
    Domingo, Pedro
    Lustrek, Mitja
    Scholz, Markus
    Rosolowski, Maciej
    Jordan, Marko
    Benczik, Bettina
    Agg, Bence
    Ferdinandy, Peter
    Baker, Andrew H.
    Fagherazzi, Guy
    Ollert, Markus
    Michel, Joanna
    Sanchez, Gabriel
    Firat, Hueseyin
    Brandenburger, Timo
    Martelli, Fabio
    Badimon, Lina
    Devaux, Yvan
    CLINICAL AND TRANSLATIONAL MEDICINE, 2024, 14 (10):
  • [22] Detection of COVID-19 from X-Ray Images Using Machine Learning Models
    Sakib, Md. Masrul
    Karim, Meem
    Swachchha, Aftab Miraj
    Islam, Maheen
    Lecture Notes in Networks and Systems, 2023, 578 : 759 - 773
  • [23] Detection and analysis of COVID-19 in medical images using deep learning techniques
    Dandi Yang
    Cristhian Martinez
    Lara Visuña
    Hardev Khandhar
    Chintan Bhatt
    Jesus Carretero
    Scientific Reports, 11
  • [24] Detection and analysis of COVID-19 in medical images using deep learning techniques
    Yang, Dandi
    Martinez, Cristhian
    Visuna, Lara
    Khandhar, Hardev
    Bhatt, Chintan
    Carretero, Jesus
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [25] Fast Automated Detection of COVID-19 from CT Images Using Transfer Learning Approach
    Mante, Jyoti
    Deshpande, Swarupa
    Patil, Prerna
    INTELLIGENT SYSTEMS AND APPLICATIONS, ICISA 2022, 2023, 959 : 391 - 401
  • [26] COVID-19 detection in CT and CXR images using deep learning models
    Ines Chouat
    Amira Echtioui
    Rafik Khemakhem
    Wassim Zouch
    Mohamed Ghorbel
    Ahmed Ben Hamida
    Biogerontology, 2022, 23 : 65 - 84
  • [27] COVID-19 detection in CT and CXR images using deep learning models
    Chouat, Ines
    Echtioui, Amira
    Khemakhem, Rafik
    Zouch, Wassim
    Ghorbel, Mohamed
    Ben Hamida, Ahmed
    BIOGERONTOLOGY, 2022, 23 (01) : 65 - 84
  • [28] Comparing different machine learning techniques for predicting COVID-19 severity
    Yibai Xiong
    Yan Ma
    Lianguo Ruan
    Dan Li
    Cheng Lu
    Luqi Huang
    Infectious Diseases of Poverty, 11
  • [29] Applying Different Machine Learning Techniques for Prediction of COVID-19 Severity
    Sayed, Safynaz Abdel-Fattah
    Elkorany, Abeer Mohamed
    Mohammad, Sabah Sayed
    IEEE ACCESS, 2021, 9 : 135697 - 135707
  • [30] Community detection using unsupervised machine learning techniques on COVID-19 dataset
    Chaudhary, Laxmi
    Singh, Buddha
    SOCIAL NETWORK ANALYSIS AND MINING, 2021, 11 (01)