COVID-19 severity detection using machine learning techniques from CT-images

被引:0
|
作者
A. L. Aswathy
Hareendran S. Anand
S. S. Vinod Chandra
机构
[1] University of Kerala,Department of Computer Science
[2] Muthoot Institute of Technology and Science,Department of Computer Science and Engineering
来源
Evolutionary Intelligence | 2023年 / 16卷
关键词
Computed tomography; DenseNet-201; ResNet-50; AlexNet; Transfer learning; Neural network;
D O I
暂无
中图分类号
学科分类号
摘要
COVID-19 has spread worldwide and the World Health Organization was forced to list it as a Public Health Emergency of International Concern. The disease has severely impacted most of the people because it affects the lung and causes severe breathing problems and lung infections. Differentiating other lung ailments from COVID-19 infection and determining the severity is a challenging process. Doctors can give vital life-saving services and support patients’ lives only if the severity of their condition is determined. This work proposed a two-step approach for detecting the COVID-19 infection from the lung CT images and determining the severity of the patient’s illness. To extract the features, pre-trained models are used, and by analyzing them, integrated the features from AlexNet, DenseNet-201, and ResNet-50. The COVID-19 detection is carried out by using an Artificial Neural Network(ANN) model. After the COVID-19 infection has been identified, severity detection is performed. For that, image features are combined with the clinical data and is classified as High, Moderate, Low with the help of Cubic Support Vector Machine(SVM). By considering three severity levels, patients with high risk can be given more attention. The method was tested on a publicly available dataset and obtained an accuracy of 92.0%, sensitivity of 96.0%, and an F1-Score of 91.44% for COVID-19 detection and got overall accuracy of 90.0% for COVID-19 severity detection for three classes.
引用
收藏
页码:1423 / 1431
页数:8
相关论文
共 50 条
  • [1] COVID-19 severity detection using machine learning techniques from CT-images
    Aswathy, A. L.
    Anand, Hareendran S.
    Chandra, S. S. Vinod
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (04) : 1423 - 1431
  • [2] COVID-19 CT-images diagnosis and severity assessment using machine learning algorithm
    Zaid Albataineh
    Fatima Aldrweesh
    Mohammad A. Alzubaidi
    Cluster Computing, 2024, 27 : 547 - 562
  • [3] COVID-19 CT-images diagnosis and severity assessment using machine learning algorithm
    Albataineh, Zaid
    Aldrweesh, Fatima
    Alzubaidi, Mohammad A.
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (01): : 547 - 562
  • [4] COVID-19 diagnosis and severity detection from CT-images using transfer learning and back propagation neural network
    Aswathy, A. L.
    Hareendran, Anand S.
    Chandra, Vinod S. S.
    JOURNAL OF INFECTION AND PUBLIC HEALTH, 2021, 14 (10) : 1435 - 1445
  • [5] Severity detection of COVID-19 infection with machine learning of clinical records and CT images
    Zhu, Fubao
    Zhu, Zelin
    Zhang, Yijun
    Zhu, Hanlei
    Gao, Zhengyuan
    Liu, Xiaoman
    Zhou, Guanbin
    Xu, Yan
    Shan, Fei
    TECHNOLOGY AND HEALTH CARE, 2022, 30 (06) : 1299 - 1314
  • [6] Detection and Severity Classification of COVID-19 in CT Images Using Deep Learning
    Qiblawey, Yazan
    Tahir, Anas
    Chowdhury, Muhammad E. H.
    Khandakar, Amith
    Kiranyaz, Serkan
    Rahman, Tawsifur
    Ibtehaz, Nabil
    Mahmud, Sakib
    Maadeed, Somaya Al
    Musharavati, Farayi
    Ayari, Mohamed Arselene
    DIAGNOSTICS, 2021, 11 (05)
  • [7] A Traditional Machine Learning Approach for COVID-19 Detection from CT Images
    Kabir, Sultanul
    Mohammed, Emad A.
    Zaamout, Khobaib
    Ikki, Salama
    2021 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS DASC/PICOM/CBDCOM/CYBERSCITECH 2021, 2021, : 256 - 263
  • [8] Detection of COVID-19 Disease with Machine Learning Algorithms from CT Images
    Ekersular, Mahmut Nedim
    Alkan, Ahmet
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2024, 37 (01): : 169 - 181
  • [9] Lung Segmentation followed by Machine Learning & Deep Learning Techniques for COVID-19 Detection in lung CT Images
    Tarhini, Hatem
    Mohamad, Rayan
    Rammal, Abbas
    Ayache, Mohammad
    2021 SIXTH INTERNATIONAL CONFERENCE ON ADVANCES IN BIOMEDICAL ENGINEERING (ICABME), 2021, : 222 - 227
  • [10] Detection and classification of Covid-19 in CT-lungs screening using machine learning techniques
    Shahin, Osama R.
    Abd El-Aziz, Rasha M.
    Taloba, Ahmed I.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (03) : 791 - 813