Families of sets not belonging to algebras and combinatorics of finite sets of ultrafilters

被引:0
作者
Leonid Š Grinblat
机构
[1] Ariel University,Department of Computer Science and Mathematics
来源
Journal of Inequalities and Applications | / 2015卷
关键词
algebra of sets; -algebra; ultrafilter; pairwise disjoint sets; 03E05; 54D35;
D O I
暂无
中图分类号
学科分类号
摘要
This article is a part of the theory developed by the author in which the following problem is solved under natural assumptions: to find necessary and sufficient conditions under which the union of at most countable family of algebras on a certain set X is equal to P(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{P}(X)$\end{document}. Here the following new result is proved. Let {Aλ}λ∈Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\mathcal{A}_{\lambda }\}_{\lambda \in \Lambda }$\end{document} be a finite collection of algebras of sets given on a set X with #(Λ)=n>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\# (\Lambda ) =n>0$\end{document}, and for each λ there exist at least 103n+2n3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{10}{3}n+\sqrt{\frac{2n}{3}}$\end{document} pairwise disjoint sets belonging to P(X)∖Aλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{P}(X)\setminus\mathcal{A}_{\lambda }$\end{document}. Then there exists a family {Uλ1,Uλ2}λ∈Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{U^{1}_{\lambda }, U^{2}_{\lambda }\}_{\lambda \in \Lambda }$\end{document} of pairwise disjoint subsets of X (Uλi∩Uλ′j=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U^{i}_{\lambda }\cap U^{j}_{\lambda '}=\emptyset$\end{document} except the case λ=λ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda =\lambda '$\end{document}, i=j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i=j$\end{document}); and for each λ the following holds: if Q∈P(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q\in \mathcal{P}(X)$\end{document} and Q contains one of the two sets Uλ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U^{1}_{\lambda }$\end{document}, Uλ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U^{2}_{\lambda }$\end{document}, and its intersection with the other set is empty, then Q∉Aλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q\notin \mathcal{A}_{\lambda }$\end{document}.
引用
收藏
相关论文
共 11 条
[1]  
Grinblat LŠ(1992)On sets not belonging to algebras of subsets Mem. Am. Math. Soc. 100 51-57
[2]  
Grinblat LŠ(2004)Theorems on sets not belonging to algebras Electron. Res. Announc. Am. Math. Soc. 10 483-500
[3]  
Grinblat LŠ(2007)On sets not belonging to algebras J. Symb. Log. 72 613-623
[4]  
Grinblat LŠ(2010)Finite and countable families of algebras of sets Math. Res. Lett. 17 859-868
[5]  
Grinblat LŠ(2015)Limitations on representing Proc. Am. Math. Soc. 143 127-141
[6]  
Erdös P(1950) as a union of proper subalgebras Proc. Am. Math. Soc. 1 140-150
[7]  
Ulam S(1930)Some remarks on set theory Fundam. Math. 16 129-160
[8]  
Gitik M(1989)Zur Masstheorie in der allgemeinen Mengenlehre Isr. J. Math. 68 482-489
[9]  
Shelah S(1958)Forcing with ideals and simple forcing notions Ill. J. Math. 2 264-286
[10]  
Gleason AM(1930)Projective topological spaces Proc. Lond. Math. Soc. 30 undefined-undefined