On the Cauchy problem for nonlinear parabolic equations with variable density

被引:0
作者
Fabio Punzo
机构
[1] Università di Roma “La Sapienza”,Dipartimento di Matematica “G. Castelnuovo”
来源
Journal of Evolution Equations | 2009年 / 9卷
关键词
Cauchy Problem; Parabolic Equation; Viscosity Solution; Elliptic Problem; Satisfying Condition;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the well-posedness of the Cauchy problem for a class of nonlinear parabolic equations with variable density. Sufficient conditions for uniqueness or nonuniqueness in L∞(IRN × (0, T)) (N ≥ 3) are established in dependence of the behavior of the density at infinity. We deal with conditions at infinity of Dirichlet type, and possibly inhomogeneous.
引用
收藏
页码:429 / 447
页数:18
相关论文
共 34 条
  • [1] Benilan P.H.(1984)Solutions of the porous medium equation in Indiana Univ. Math. J. 33 51-87
  • [2] Crandall M.G.(1979) under optimal conditions on initial values J. Math. Pures Appl. 58 153-163
  • [3] Pierre M.(1992)Uniqueness of solutions of the initial-value problem for Manuscripta Math. 74 87-106
  • [4] Brezis H.(2000) −Δφ( Asympt. Anal. 22 349-358
  • [5] Crandall M.G.(1990)) = 0 J. Differ. Eq. 84 309-318
  • [6] Brezis H.(1991)Sublinear elliptic equations in J. Funct. Anal. 100 400-410
  • [7] Kamin S.(1994)Uniqueness of solutions of the Cauchy problem for parabolic equations degenerating at infinity Proc. Amer. Math. Soc. 120 825-830
  • [8] Eidelman S.D.(1962)The Cauchy problem for the nonlinear filtration equation in an inhomogeneous medium Russian Math. Surveys 17 1-144
  • [9] Kamin S.(1995)The perturbed Laplace operator in a weighted Funkc. Ekv. 38 101-120
  • [10] Porper F.(1963)The filtration equation in a class of functions decreasing at infinity Vestnik Moscow 6 17-27