Normalized Solutions of Nonautonomous Kirchhoff Equations: Sub- and Super-critical Cases

被引:0
作者
Sitong Chen
Vicenţiu D. Rădulescu
Xianhua Tang
机构
[1] Central South University,School of Mathematics and Statistics
[2] AGH University of Science and Technology,Faculty of Applied Mathematics
[3] University of Craiova,Department of Mathematics
来源
Applied Mathematics & Optimization | 2021年 / 84卷
关键词
Kirchhoff problem; Normalized solution; Concentration-compactness; Indefinite potential; -supercritical growth; -subcritical growth; 35J20; 35J65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish the existence of normalized solutions to the following Kirchhoff-type equation -a+b∫R3|∇u|2dxΔu-λu=K(x)f(u),x∈R3;u∈H1(R3),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} -\left( a+b\int _{{\mathbb {R}}^3}|\nabla u|^2{\mathrm {d}}x\right) \Delta u-\lambda u=K(x)f(u), &{} x\in {\mathbb {R}}^3; \\ u\in H^1({\mathbb {R}}^3), \end{array} \right. \end{aligned}$$\end{document}where a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b> 0$$\end{document}, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} is unknown and appears as a Lagrange multiplier, K∈C(R3,R+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\in {\mathcal {C}}({\mathbb {R}}^3, {\mathbb {R}}^+)$$\end{document} with 0<lim|y|→∞K(y)≤infR3K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\lim _{|y|\rightarrow \infty }K(y)\le \inf _{{\mathbb {R}}^3} K$$\end{document}, and f∈C(R,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in {\mathcal {C}}({\mathbb {R}},{\mathbb {R}})$$\end{document} satisfies general L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-supercritical or L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-subcritical conditions. We introduce some new analytical techniques in order to exclude the vanishing and the dichotomy cases of minimizing sequences due to the presence of the potential K and the lack of the homogeneity of the nonlinearity f. This paper extends to the nonautonomous case previous results on prescribed L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm solutions of Kirchhoff problems.
引用
收藏
页码:773 / 806
页数:33
相关论文
共 45 条
  • [31] Normalized Solutions for the Fractional Choquard Equations with Lower Critical Exponent and Nonlocal Perturbation
    Chen, Zilin
    Yang, Yang
    TAIWANESE JOURNAL OF MATHEMATICS, 2024,
  • [32] NORMALIZED SOLUTIONS FOR SCHRODINGER EQUATIONS WITH CRITICAL EXPONENTIAL GROWTH IN R2
    Chen, Sitong
    Ruadulescu, Vicentiu d.
    Tang, Xianhua
    Yuan, Shuai
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (06) : 7704 - 7740
  • [33] Normalized Solutions to N-Laplacian Equations in RN with Exponential Critical Growth
    Dou, Jingbo
    Huang, Ling
    Zhong, Xuexiu
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (10)
  • [34] Normalized solutions of Schrodinger equations involving Moser-Trudinger critical growth
    Li, Gui-Dong
    Zhang, Jianjun
    ADVANCES IN NONLINEAR ANALYSIS, 2024, 13 (01)
  • [35] Multiplicity of solutions for some singular quasilinear Schrodinger-Kirchhoff equations with critical exponents
    Zhang, Nian
    Jia, Gao
    Zhang, Tiansi
    APPLICABLE ANALYSIS, 2022, 101 (13) : 4598 - 4614
  • [36] Normalized solutions for the fractional Choquard equations with Sobolev critical and double mass supercritical growth
    Li, Quanqing
    Wang, Wenbo
    Liu, Meiqi
    LETTERS IN MATHEMATICAL PHYSICS, 2023, 113 (02)
  • [37] Normalized solutions for the fractional Choquard equations with Sobolev critical and double mass supercritical growth
    Quanqing Li
    Wenbo Wang
    Meiqi Liu
    Letters in Mathematical Physics, 113
  • [38] Normalized solutions for Schrödinger equations with critical Sobolev exponent and perturbations of Choquard terms
    Jin, Peng
    Yang, Heng
    Zhou, Xin'ao
    BULLETIN OF MATHEMATICAL SCIENCES, 2025,
  • [39] Sign-Changing Solutions for Fractional Kirchhoff-Type Equations with Critical and Supercritical Nonlinearities
    Liu Gao
    Chunfang Chen
    Jianhua Chen
    Chuanxi Zhu
    Mediterranean Journal of Mathematics, 2021, 18
  • [40] Sign-Changing Solutions for Fractional Kirchhoff-Type Equations with Critical and Supercritical Nonlinearities
    Gao, Liu
    Chen, Chunfang
    Chen, Jianhua
    Zhu, Chuanxi
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (03)