Normalized Solutions of Nonautonomous Kirchhoff Equations: Sub- and Super-critical Cases

被引:0
|
作者
Sitong Chen
Vicenţiu D. Rădulescu
Xianhua Tang
机构
[1] Central South University,School of Mathematics and Statistics
[2] AGH University of Science and Technology,Faculty of Applied Mathematics
[3] University of Craiova,Department of Mathematics
来源
Applied Mathematics & Optimization | 2021年 / 84卷
关键词
Kirchhoff problem; Normalized solution; Concentration-compactness; Indefinite potential; -supercritical growth; -subcritical growth; 35J20; 35J65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish the existence of normalized solutions to the following Kirchhoff-type equation -a+b∫R3|∇u|2dxΔu-λu=K(x)f(u),x∈R3;u∈H1(R3),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} -\left( a+b\int _{{\mathbb {R}}^3}|\nabla u|^2{\mathrm {d}}x\right) \Delta u-\lambda u=K(x)f(u), &{} x\in {\mathbb {R}}^3; \\ u\in H^1({\mathbb {R}}^3), \end{array} \right. \end{aligned}$$\end{document}where a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b> 0$$\end{document}, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} is unknown and appears as a Lagrange multiplier, K∈C(R3,R+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\in {\mathcal {C}}({\mathbb {R}}^3, {\mathbb {R}}^+)$$\end{document} with 0<lim|y|→∞K(y)≤infR3K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\lim _{|y|\rightarrow \infty }K(y)\le \inf _{{\mathbb {R}}^3} K$$\end{document}, and f∈C(R,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in {\mathcal {C}}({\mathbb {R}},{\mathbb {R}})$$\end{document} satisfies general L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-supercritical or L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-subcritical conditions. We introduce some new analytical techniques in order to exclude the vanishing and the dichotomy cases of minimizing sequences due to the presence of the potential K and the lack of the homogeneity of the nonlinearity f. This paper extends to the nonautonomous case previous results on prescribed L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm solutions of Kirchhoff problems.
引用
收藏
页码:773 / 806
页数:33
相关论文
共 45 条
  • [1] Normalized Solutions of Nonautonomous Kirchhoff Equations: Sub- and Super-critical Cases
    Chen, Sitong
    Radulescu, Vicentiu D.
    Tang, Xianhua
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (01) : 773 - 806
  • [2] Existence of Normalized Solutions for Mass Super-Critical Quasilinear Schrödinger Equation with Potentials
    Gao, Fengshuang
    Guo, Yuxia
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (11)
  • [3] Normalized solutions for the general Kirchhoff type equations
    Liu, Wenmin
    Zhong, Xuexiu
    Zhou, Jinfang
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (05) : 1886 - 1902
  • [4] Normalized solutions of Kirchhoff equations with Hartree-type nonlinearity
    Yuan, Shuai
    Gao, Yuning
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2023, 31 (01): : 271 - 294
  • [5] Existence and blow up behavior of positive normalized solution to the Kirchhoff equation with general nonlinearities: Mass super-critical case
    He, Qihan
    Lv, Zongyan
    Zhang, Yimin
    Zhong, Xuexiu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 356 : 375 - 406
  • [6] Normalized Ground State Solutions for Nonautonomous Choquard Equations
    Luo, Huxiao
    Wang, Lushun
    FRONTIERS OF MATHEMATICS, 2023, 18 (06): : 1269 - 1294
  • [7] Normalized Solutions for Nonautonomous Schrodinger Equations on a Suitable Manifold
    Chen, Sitong
    Tang, Xianhua
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) : 1637 - 1660
  • [8] Normalized Ground State Solutions for Nonautonomous Choquard Equations
    Huxiao Luo
    Lushun Wang
    Frontiers of Mathematics, 2023, 18 : 1269 - 1294
  • [9] Normalized solutions for nonautonomous Schrodinger-Poisson equations
    Xu, Yating
    Luo, Huxiao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (03):
  • [10] Existence and concentration behavior of normalized solutions for critical Kirchhoff type equations with general nonlinearities
    Lu, Shuyao
    Mao, Anmin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04):