Generalization of Dirac Conjugation in the Superalgebraic Theory of Spinors

被引:0
作者
V. V. Monakhov
机构
[1] St. Petersburg State University,
来源
Theoretical and Mathematical Physics | 2019年 / 200卷
关键词
second quantization; CAR algebra; Clifford algebra; Dirac matrix; spinor; Dirac conjugation; Lorentz transformation; Lorentz covariance; causality; charge operator;
D O I
暂无
中图分类号
学科分类号
摘要
In the superalgebraic representation of spinors using Grassmann densities and the corresponding derivatives, we introduce a generalization of Dirac conjugation, and this generalization yields Lorentz-covariant transformations of conjugate spinors. The signature of the generalized gamma matrices, the number of them, and the decomposition of second quantization with respect to momenta are given by a variant of the generalized Dirac conjugation and by the requirement that the algebra of canonical anticommutation relations should be preserved under transformations of spinors and conjugate spinors.
引用
收藏
页码:1026 / 1042
页数:16
相关论文
共 24 条
[1]  
Figueiredo V L(1990)“Covariant, algebraic, and operator spinors,” Internat. J. Theoret. Phys. 29 371-395
[2]  
Oliveira E C d(2016)“The hidden geometrical nature of spinors,” The Many Faces o. Maxwell, Dirac, and Einstein Equations 922 69-105
[3]  
Rodrigues W A(1935)“Spinors in Amer. J. Math. 57 425-449
[4]  
Rodrigues W A(1949) dimensions,” Proc. Kon. Ned. Akad. Wetensch. 52 597-609
[5]  
Oliveira E C d(1955)“On the geometry of spin spaces I,” Uspekhi Mat. Nauk 10 3-110
[6]  
Brauer R(1993)“Theory of spinors,” Found. Phys. 23 1203-1237
[7]  
Weyl H(2013)“Clifford algebras and Hestenes spinors,” Phys. Lett. B 718 1519-1523
[8]  
Schouten J A(2010)“Unfolding physics from the algebraic classification of spinor fields,” Phys. Lett. B 692 212-217
[9]  
Rashevskii P K(2016)“Space inversion of spinors revisited: A possible explanation of chiral behavior in weak interactions,” Theor. Math. Phys. 186 70-82
[10]  
Lounesto P(2016)“Superalgebraic representation of Dirac matrices,” Bull. Russ. Acad. Sci.: Phys. 80 985-988