Synergistic interactions between cetrimide and sodium dodecyl sulfate (SDS) were studied at three different temperatures. Aqueous solutions of pure cetrimide, SDS and their mixtures were investigated conductometrically. The mixed surfactants exhibited nonideal behavior as the CMCs are less than the ideal CMC values calculated by using Clint’s equation. In addition, Rubingh’s model was used and various parameters such as the activity coefficients f1 and f2, micelllar mole fraction, X, interaction parameter, β, excess Gibbs energy and enthalpy of mixing, ΔGex\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta G_{\text{ex}} $$\end{document} and ΔHex\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta H_{\text{ex}} $$\end{document}, respectively, were calculated. The values of f1, f2, and β indicate strong interaction between cetrimide and SDS and the interaction increases with increasing mole fraction of SDS in the mixture. Negative β values and |β| > |ln(CMC1/CMC2)| clearly confirm synergism in the surfactant mixture. Negative ΔGex\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta G_{\text{ex}}^{{}} $$\end{document} and ΔHex\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta H_{\text{ex}}^{{}} $$\end{document} values of the mixed systems at different bulk mole fractions also reflect the behaviors of β and f. The values of the standard Gibbs energy and enthalpy of mixed micelle formation are negative, suggesting that micellization is thermodynamically favorable and exothermic in nature. Larger positive contributions of the entropic component, TΔSm0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ T\Delta S_{\text{m}}^{ 0} $$\end{document}, than the enthalpic component, ΔHm0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta H_{\text{m}}^{ 0} $$\end{document}, to ΔGm0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta G_{\text{m}}^{ 0} $$\end{document} are ascribed to the destruction of the structured water surrounding the hydrophobic groups of the surfactants when these groups are transferred from the bulk into the interior of the micelle.