Restarted block Lanczos bidiagonalization methods

被引:0
|
作者
James Baglama
Lothar Reichel
机构
[1] University of Rhode Island,Department of Mathematics
[2] Kent State University,Department of Mathematical Sciences
来源
Numerical Algorithms | 2006年 / 43卷
关键词
partial singular value decomposition; restarted iterative method; implicit shifts; augmentation; 65F15; 15A18;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of computing a few of the largest or smallest singular values and associated singular vectors of a large matrix arises in many applications. This paper describes restarted block Lanczos bidiagonalization methods based on augmentation of Ritz vectors or harmonic Ritz vectors by block Krylov subspaces.
引用
收藏
页码:251 / 272
页数:21
相关论文
共 50 条
  • [1] Restarted block Lanczos bidiagonalization methods
    Baglama, James
    Reichel, Lothar
    NUMERICAL ALGORITHMS, 2006, 43 (03) : 251 - 272
  • [2] Augmented implicitly restarted Lanczos bidiagonalization methods
    Baglama, J
    Reichel, L
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (01): : 19 - 42
  • [3] Hybrid iterative refined restarted Lanczos bidiagonalization methods
    James Baglama
    Vasilije Perović
    Jennifer Picucci
    Numerical Algorithms, 2023, 92 : 1183 - 1212
  • [4] Hybrid iterative refined restarted Lanczos bidiagonalization methods
    Baglama, James
    Perovic, Vasilije
    Picucci, Jennifer
    NUMERICAL ALGORITHMS, 2023, 92 (02) : 1183 - 1212
  • [5] An implicitly restarted block Lanczos bidiagonalization method using Leja shifts
    James Baglama
    Lothar Reichel
    BIT Numerical Mathematics, 2013, 53 : 285 - 310
  • [6] An implicitly restarted block Lanczos bidiagonalization method using Leja shifts
    Baglama, James
    Reichel, Lothar
    BIT NUMERICAL MATHEMATICS, 2013, 53 (02) : 285 - 310
  • [7] Thick-restarted joint Lanczos bidiagonalization for the GSVD
    Alvarruiz, Fernando
    Campos, Carmen
    Roman, Jose E.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 440
  • [8] Computing smallest singular triplets with implicitly restarted Lanczos bidiagonalization
    Kokiopoulou, E
    Bekas, C
    Gallopoulos, E
    APPLIED NUMERICAL MATHEMATICS, 2004, 49 (01) : 39 - 61
  • [9] A ROBUST AND EFFICIENT PARALLEL SVD SOLVER BASED ON RESTARTED LANCZOS BIDIAGONALIZATION
    Hernandez, Vicente
    Roman, Jose E.
    Tomas, Andres
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 31 : 68 - 85
  • [10] Convergence estimates of nonrestarted and restarted block-Lanczos methods
    Zhou, Ming
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (05)