Complete Space-like λ-surfaces in the Minkowski Space ℝ13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ℝ_1^3$$\end{document} with the Second Fundamental Form of Constant Length

被引:0
作者
Xing Xiao Li
Yang Yang Liu
Rui Na Qiao
机构
[1] Henan Normal University Xinxiang,School of Mathematics and Information Sciences
关键词
Mean curvature; second fundamental form; space-like λ-surfaces; classification; 53C44; 53C40;
D O I
10.1007/s10114-020-9078-x
中图分类号
学科分类号
摘要
In this paper we study the complete space-like λ-surfaces in the three dimensional Minkowski space ℝ13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ℝ_1^3$$\end{document}. As the result, we obtain a complete classification theorem for all the complete space-like λ-surfaces x:M2→ℝ13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x:{M^2} \to ℝ_1^3$$\end{document} with the second fundamental form of constant length. This is a natural extension to the λ-surfaces in ℝ13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ℝ_1^3$$\end{document} of a recent interesting classification theorem by Cheng and Wei for λ-surfaces in the Euclidean space ℝ3.
引用
收藏
页码:559 / 577
页数:18
相关论文
共 67 条
[1]  
Abresch U(1986)The normalized curve shortening flow and homothetic solutions J. Differ. Geom. 23 175-196
[2]  
Langer J(2014)Spacelike self-similar shrinking solutions of the mean curvature flow in pseudo-Euclidean spaces Comm.. Anal. Geom. 22 897-929
[3]  
Adames M R(2013)A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension Calc. Var. Partial Differ. Eqns. 46 879-889
[4]  
Cao H D(2012)Rigidity of entire self-shrinking solutions to curvature flows J. Reine Angew. Math. 664 229-239
[5]  
Li H(2014)Omori-Yau maximum principles, V-harmonic maps and their geometric applications Ann. Global Anal. Geom. 46 259-279
[6]  
Chau A(2016)Rigidity of self-shrinkers and translating solitons of mean curvature flows Adv. Math. 294 517-531
[7]  
Chen J(2016)2-dimensional complete self-shrinkers in R Math. Z. 284 537-542
[8]  
Yuan Y(2016)Rigidity theorems of λ-hypersurfaces Comm. Anal. Geom. 24 45-58
[9]  
Chen Q(2015)Complete self-shrinkers of the mean curvature flow Calc. Var. Partial Differ. Eqns. 52 497-506
[10]  
Jost J(2015)A gap theorem for self-shrinkers Trans. Amer. Math. Soc. 367 4895-4915