Shifted Distinct-part Partition Identities in Arithmetic Progressions

被引:0
作者
Ethan Alwaise
Robert Dicks
Jason Friedman
Lianyan Gu
Zach Harner
Hannah Larson
Madeline Locus
Ian Wagner
Josh Weinstock
机构
[1] Emory University,Department of Mathematics and Computer Science
[2] Harvard University,Department of Mathematics
来源
Annals of Combinatorics | 2017年 / 21卷
关键词
partitions; modular forms; congruences; 11P83; 11F33;
D O I
暂无
中图分类号
学科分类号
摘要
The partition function p(n), which counts the number of partitions of a positive integer n, is widely studied. Here, we study partition functions pS(n) that count partitions of n into distinct parts satisfying certain congruence conditions. A shifted partition identity is an identity of the form pS1(n-H)=pS2(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{p_{S_1}} (n - H) = {p_{S_2}} (n)}$$\end{document} for all n in some arithmetic progression. Several identities of this type have been discovered, including two infinite families found by Alladi. In this paper, we use the theory of modular functions to determine the necessary and sufficient conditions for such an identity to exist. In addition, for two specific cases, we extend Alladi’s theorem to other arithmetic progressions.
引用
收藏
页码:479 / 494
页数:15
相关论文
共 4 条
[1]  
Alladi K.(1995)Some new observations on the Göllnitz-Gordon and Rogers-Ramanujan identities Trans. Amer. Math. Soc. 347 897-914
[2]  
Alladi K.(1996)The quintuple product identity and shifted partition functions J. Comput. Appl. Math. 68 3-13
[3]  
Garvan F.G.(2007)Shifted and shiftless partition identities. II Int. J. Number Theory 3 43-84
[4]  
Yesilyurt H.(undefined)undefined undefined undefined undefined-undefined