Machine learning algorithms in shipping: improving engine fault detection and diagnosis via ensemble methods

被引:0
|
作者
G. Tsaganos
N. Nikitakos
D. Dalaklis
A.I. Ölcer
D. Papachristos
机构
[1] Merchant Academy of Athens,Department of Marine Engineering
[2] Department of Shipping Trade & Transport,undefined
[3] World Maritime University (WMU),undefined
[4] Department of Industrial Engineering and Production,undefined
来源
关键词
Marine diesel engine; Fault detection; Machine learning algorithms; Ensemble methods; Weka; Cross-validation; Confusion matrix;
D O I
暂无
中图分类号
学科分类号
摘要
Detection and diagnosis of marine engines faults are extremely important functions for the optimized voyage of any sea-going vessel, as well as the safe conduct of navigation. Early detection of these faults is a prerequisite for reliability: incidents of engine breakdowns can be avoided, since the timely resolving of these faults can ensure the non-interrupted tempo of the sail. Avoiding malfunctions could also improve the ship’s overall environmental “footprint” and even ensure reduced fuel consumption. Initial results of the analysis at hand were presented during the 3rd International Symposium on Naval Architecture and Maritime (INT-NAM 2018), in Istanbul-Turkey. Further exploring the use of machine learning algorithms in shipping and by elaborating more on that effort, an evaluation of intelligent diagnostic methods applicable for a two-stroke slow-speed marine diesel engine is taking place, with the aim to facilitate effective detection and classification of occurring faults. This research was carried out via the cost-free Weka data mining tool, which was used to analyze the data of the engine’s operating parameters that were found outside of the prescribed boundaries. The proposed method is based on the construction of an ensemble classification model “AdaBoost”, which further improves the performance of a basic Simple Cart classifier. During the related experimental activities, the overall recorded performance was 96.5%, clearly establishing this method as a very appropriate choice.
引用
收藏
页码:51 / 72
页数:21
相关论文
共 50 条
  • [1] Machine learning algorithms in shipping: improving engine fault detection and diagnosis via ensemble methods
    Tsaganos, G.
    Nikitakos, N.
    Dalaklis, D.
    Olcer, A., I
    Papachristos, D.
    WMU JOURNAL OF MARITIME AFFAIRS, 2020, 19 (01) : 51 - 72
  • [2] Machine fault detection methods based on machine learning algorithms: A review
    Ciaburro, Giuseppe
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (11) : 11453 - 11490
  • [3] Assessment of machine learning and ensemble methods for fault diagnosis of photovoltaic systems
    Mellit, Adel
    Kalogirou, Soteris
    RENEWABLE ENERGY, 2022, 184 : 1074 - 1090
  • [4] Fault Detection of NPC Inverter Based on Ensemble Machine Learning Methods
    Al-kaf, Hasan Ali Gamal
    Lee, Jung-Won
    Lee, Kyo-Beum
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2023, 19 (01) : 285 - 295
  • [5] Fault Detection of NPC Inverter Based on Ensemble Machine Learning Methods
    Hasan Ali Gamal Al-kaf
    Jung-Won Lee
    Kyo-Beum Lee
    Journal of Electrical Engineering & Technology, 2024, 19 : 285 - 295
  • [6] Application of Machine Learning Algorithms for Fault Detection and Diagnosis in Power Systems
    Haripriya, M. P.
    Vasanth, Durai R.
    Anand, M. Suresh
    Kulkarni, Vikas Vitthal
    Farook, S.
    Kumar, K. R. Senthil
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [7] Fault detection and diagnosis in refrigeration systems using machine learning algorithms
    Soltani, Zahra
    Sorensen, Kresten Kjaer
    Leth, John
    Bendtsen, Jan Dimon
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2022, 144 : 34 - 45
  • [8] Fault Detection & Diagnosis for Small UAVs via Machine Learning
    Baskaya, Elgiz
    Bronz, Murat
    Delahaye, Daniel
    2017 IEEE/AIAA 36TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC), 2017,
  • [9] Ensemble of Machine Learning Algorithms for Intrusion Detection
    Chou, Te-Shun
    Fan, Jeffrey
    Fan, Sharon
    Makki, Kia
    2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 3976 - +
  • [10] Fault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
    Patil, S.
    Phalle, V
    INTERNATIONAL JOURNAL OF ENGINEERING, 2018, 31 (11): : 1972 - 1981