Representing homomorphisms of distributive lattices as restrictions of congruences of rectangular lattices

被引:0
作者
Gábor Czédli
机构
[1] University of Szeged,
[2] Bolyai Institute,undefined
来源
Algebra universalis | 2012年 / 67卷
关键词
Primary: 06B15; Secondary: 06C10; 06B10; congruence lattice representation; rectangular lattice; semimodular lattice; slim lattice; distributive lattice; quasiordering;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi}$$\end{document} be a {0, 1}-homomorphism of a finite distributive lattice D into the congruence lattice Con L of a rectangular (whence finite, planar, and semimodular) lattice L. We prove that L is a filter of an appropriate rectangular lattice K such that ConK is isomorphic with D and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi}$$\end{document} is represented by the restriction map from Con K to Con L. The particular case where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi}$$\end{document} is an embedding was proved by E.T. Schmidt. Our result implies that each {0, 1}-lattice homomorphism between two finite distributive lattices can be represented by the restriction of congruences of an appropriate rectangular lattice to a rectangular filter.
引用
收藏
页码:313 / 345
页数:32
相关论文
共 35 条
[21]  
Lakser H.(undefined)undefined undefined undefined undefined-undefined
[22]  
Grätzer G.(undefined)undefined undefined undefined undefined-undefined
[23]  
Lakser H.(undefined)undefined undefined undefined undefined-undefined
[24]  
Schmidt E.T.(undefined)undefined undefined undefined undefined-undefined
[25]  
Grätzer G.(undefined)undefined undefined undefined undefined-undefined
[26]  
Nation J.B.(undefined)undefined undefined undefined undefined-undefined
[27]  
Grätzer G.(undefined)undefined undefined undefined undefined-undefined
[28]  
Schmidt E.T.(undefined)undefined undefined undefined undefined-undefined
[29]  
Grätzer G.(undefined)undefined undefined undefined undefined-undefined
[30]  
Schmidt E.T.(undefined)undefined undefined undefined undefined-undefined