Representing homomorphisms of distributive lattices as restrictions of congruences of rectangular lattices

被引:0
作者
Gábor Czédli
机构
[1] University of Szeged,
[2] Bolyai Institute,undefined
来源
Algebra universalis | 2012年 / 67卷
关键词
Primary: 06B15; Secondary: 06C10; 06B10; congruence lattice representation; rectangular lattice; semimodular lattice; slim lattice; distributive lattice; quasiordering;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi}$$\end{document} be a {0, 1}-homomorphism of a finite distributive lattice D into the congruence lattice Con L of a rectangular (whence finite, planar, and semimodular) lattice L. We prove that L is a filter of an appropriate rectangular lattice K such that ConK is isomorphic with D and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi}$$\end{document} is represented by the restriction map from Con K to Con L. The particular case where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi}$$\end{document} is an embedding was proved by E.T. Schmidt. Our result implies that each {0, 1}-lattice homomorphism between two finite distributive lattices can be represented by the restriction of congruences of an appropriate rectangular lattice to a rectangular filter.
引用
收藏
页码:313 / 345
页数:32
相关论文
共 35 条
[1]  
Czédli G.(1983)On classes of ordered algebras and quasiorder distributivity Acta Sci. Math. (Szeged) 46 41-54
[2]  
Lenkehegyi A.(1950)A decomposition theorem for partially ordered sets Ann. of Math. (2) 51 161-166
[3]  
Dilworth R.P.(1942)On the distributivity of a lattice of lattice-congruences Proc. Imp. Acad. Tokyo 18 553-554
[4]  
Funayama N.(2005)A new lattice construction Algebra Universalis 53 253-265
[5]  
Nakayama T.(2007)Notes on planar semimodular lattices. I. Construction Acta Sci. Math. (Szeged) 73 445-462
[6]  
Grätzer G.(2009)Notes on planar semimodular lattices. III Congruences of rectangular lattices. Acta Sci. Math. (Szeged) 75 29-48
[7]  
Kelly D.(2010)Notes on planar semimodular lattices. IV. The size of a minimal congruence lattice representation with rectangular lattices Acta Sci. Math. (Szeged) 76 3-26
[8]  
Grätzer G.(1971)The structure of pseudocomplemented distributive lattices. II. Congruence extension and amalgamation Trans. Amer. Math. Soc. 156 343-358
[9]  
Knapp E.(1986)Homomorphisms of distributive lattices as restrictions of congruences Canad. J. Math. 38 1122-1134
[10]  
Grätzer G.(1994)Homomorphisms of distributive lattices as restrictions of congruences. II. Planarity and automorphisms Canad. J. Math. 46 3-54