On the spectral radius of bipartite graphs which are nearly complete

被引:0
作者
Kinkar Chandra Das
Ismail Naci Cangul
Ayse Dilek Maden
Ahmet Sinan Cevik
机构
[1] Sungkyunkwan University,Department of Mathematics
[2] Uludag University,Department of Mathematics, Faculty of Arts and Science
[3] Selcuk University,Department of Mathematics, Faculty of Science
来源
Journal of Inequalities and Applications | / 2013卷
关键词
bipartite graph; adjacency matrix; spectral radius;
D O I
暂无
中图分类号
学科分类号
摘要
For p,q,r,s,t∈Z+ with rt≤p and st≤q, let G=G(p,q;r,s;t) be the bipartite graph with partite sets U={u1,…,up} and V={v1,…,vq} such that any two edges ui and vj are not adjacent if and only if there exists a positive integer k with 1≤k≤t such that (k−1)r+1≤i≤kr and (k−1)s+1≤j≤ks. Under these circumstances, Chen et al. (Linear Algebra Appl. 432:606-614, 2010) presented the following conjecture:
引用
收藏
相关论文
共 50 条
  • [41] Bounds for the (Laplacian) spectral radius of graphs with parameter α
    Gui-Xian Tian
    Ting-Zhu Huang
    Czechoslovak Mathematical Journal, 2012, 62 : 567 - 580
  • [42] ON THE PALETTE INDEX OF COMPLETE BIPARTITE GRAPHS
    Hornak, Mirko
    Hudak, Juraj
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (02) : 463 - 476
  • [43] On the eigenvalues of complete bipartite signed graphs
    Pirzada, Shariefuddin
    Shamsher, Tahir
    Bhat, Mushtaq A.
    ARS MATHEMATICA CONTEMPORANEA, 2024, 24 (04)
  • [44] A note on spectral radius and degree deviation in graphs
    Zhang, Wenqian
    DISCRETE MATHEMATICS, 2021, 344 (08)
  • [45] On the spectral radius of graphs with a given domination number
    Stevanovic, Dragan
    Aouchiche, Mustapha
    Hansen, Pierre
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (8-9) : 1854 - 1864
  • [46] AN UPPER BOUND ON THE SPECTRAL RADIUS OF WEIGHTED GRAPHS
    Sorgun, S.
    Buyukkose, S.
    Ozarslan, H. S.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (05): : 517 - 524
  • [47] Bounds for the (Laplacian) spectral radius of graphs with parameter α
    Tian, Gui-Xian
    Huang, Ting-Zhu
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2012, 62 (02) : 567 - 580
  • [48] An improved upper bound on the spectral radius of graphs
    Wang, Xinxia
    Wang, Yuanfei
    Shu, Jinlong
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 922 - 924
  • [49] On the spectral radius of graphs without a star forest
    Chen, Ming-Zhu
    Liu, A-Ming
    Zhang, Xiao-Dong
    DISCRETE MATHEMATICS, 2021, 344 (04)
  • [50] Cleavages of graphs: the spectral radius
    de la Pena, Jose A.
    LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (07) : 641 - 649