Unitary group approach to the many-electron correlation problem: spin-dependent operators

被引:0
作者
Xiangzhu Li
Josef Paldus
机构
[1] University of Waterloo,Department of Applied Mathematics
来源
Theoretical Chemistry Accounts | 2014年 / 133卷
关键词
Unitary group approach (UGA); Graphical unitary group approach (GUGA); Correlation problem; Spin-dependent UGA;
D O I
暂无
中图分类号
学科分类号
摘要
Following a brief overview of the unitary group approach (UGA) to the many-electron correlation problem, focusing in particular on Shavitt’s contribution via his graphical unitary group approach, we present a short review of our earlier results for the evaluation of matrix elements (MEs) of unitary group generators or products of generators in the electronic Gel’fand–Tsetlin basis with the help of spin-adapted second-quantization-like creation and annihilation vector operators at the unitary group level. This formalism is then extended to a spin-dependent case that is required when accounting for relativistic effects by developing explicit expressions for MEs of spin-orbital creation and annihilation operators in terms of the standard spin-adapted UGA basis. This leads naturally to a segmentation of these MEs and enables the evaluation of spin-dependent one-body operators while relying largely on the segment values of the standard spin-independent UGA.
引用
收藏
相关论文
共 208 条
[11]  
Jordan P(1950)undefined Dokl Akad Nauk SSSR 71 825-undefined
[12]  
Moshinsky M(1950)undefined Dokl Akad Nauk SSSR 71 1017-undefined
[13]  
Seligman TH(1963)undefined J Math Phys 4 1449-undefined
[14]  
Louck JD(1984)undefined Int J Quantum Chem 25 553-undefined
[15]  
Gel’fand IM(1984)undefined Int J Quantum Chem 25 603-undefined
[16]  
Tsetlin ML(1984)undefined Int J Quantum Chem 25 1089-undefined
[17]  
Gel’fand IM(1984)undefined Int J Quantum Chem 26 441-undefined
[18]  
Tsetlin ML(1984)undefined Int J Quantum Chem 27 878-undefined
[19]  
Baird GE(1980)undefined Phys Scr 21 295-undefined
[20]  
Biedenharn LC(1990)undefined J Math Chem 4 295-undefined