Summation identities and transformations for hypergeometric series

被引:4
作者
Barman R. [1 ]
Saikia N. [1 ]
机构
[1] Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati
关键词
Algebraic curves; Character of finite fields; Gauss sums; Gaussian hypergeometric series; Jacobi sums; p-adic Gamma function; p-adic hypergeometric series; Teichmüller character;
D O I
10.1007/s40316-017-0087-9
中图分类号
学科分类号
摘要
We find summation identities and transformations for the McCarthy’s p-adic hypergeometric series by evaluating certain Gauss sums which appear while counting points on the family Zλ:x1d+x2d=dλx1x2d-1over a finite field Fp. Salerno expresses the number of points over a finite field Fp on the family Zλ in terms of quotients of p-adic gamma functions under the condition that d| p- 1. In this paper, we first express the number of points over a finite field Fp on the family Zλ in terms of McCarthy’s p-adic hypergeometric series for any odd prime p not dividing d(d- 1) , and then deduce two summation identities for the p-adic hypergeometric series. We also find certain transformations and special values of the p-adic hypergeometric series. We finally find a summation identity for the Greene’s finite field hypergeometric series. © 2017, Fondation Carl-Herz and Springer International Publishing AG.
引用
收藏
页码:133 / 157
页数:24
相关论文
共 19 条
[1]  
Barman R., Rahman H., Saikia N., Counting points on Dwork hypersurfaces and p -adic hypergeometric function, Bull. Aust. Math. Soc., 94, 2, pp. 208-218, (2016)
[2]  
Barman R., Saikia N., McCarthy D., Summation identities and special values of hypergeometric series in the p -adic setting, J. Number Theory, 153, pp. 63-84, (2015)
[3]  
Barman R., Saikia N., p -adic Gamma function and the polynomials x<sup>d</sup>+ ax+ b and x<sup>d</sup>+ ax<sup>d</sup> <sup>-</sup> <sup>1</sup>+ b over F<sub>q</sub> , Finite Fields Appl., 29, pp. 89-105, (2014)
[4]  
Barman R., Saikia N., On the polynomials x<sup>d</sup>+ ax<sup>i</sup>+ b and x<sup>d</sup>+ ax<sup>d</sup> <sup>-</sup> <sup>i</sup>+ b over F<sub>q</sub> and Gaussian hypergeometric series, Ramanujan J., 35, 3, pp. 427-441, (2014)
[5]  
Berndt B., Evans R., Williams K., Gauss and Jacobi Sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, (1998)
[6]  
Candelas P., de La Ossa X., Rodriguez-Villegas F., Calabi–Yau Manifolds over Finite Fields I
[7]  
Candelas P., de La Ossa X., Rodriguez-Villegas F., Calabi–Yau Manifolds over Finite Fields II
[8]  
Dwork B., p -adic cycles, Pub. math. de l’I.H.É.S, 37, pp. 27-115, (1969)
[9]  
Goodson H., Hypergeometric functions and relations to Dwork hypersurfaces, Int. J. Number Theory, 13, 2, pp. 439-485, (2017)
[10]  
Fuselier J., Hypergeometric functions over F<sub>p</sub> and relations to elliptic curve and modular forms, Proc. Am. Math. Soc., 138, pp. 109-123, (2010)