Minimal Soft Lattice Theta Functions

被引:0
作者
Laurent Bétermin
机构
[1] University of Vienna,Faculty of Mathematics
来源
Constructive Approximation | 2020年 / 52卷
关键词
Theta functions; Lattice energies; Crystal; Defects; Calculus of variations; Primary 74G65; Secondary 82B20;
D O I
暂无
中图分类号
学科分类号
摘要
We study the minimality properties of a new type of “soft” theta functions. For a lattice L⊂Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\subset {\mathbb {R}}^d$$\end{document}, an L-periodic distribution of mass μL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _L$$\end{document}, and another mass νz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _z$$\end{document} centered at z∈Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\in {\mathbb {R}}^d$$\end{document}, we define, for all scaling parameters α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}, the translated lattice theta function θμL+νz(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{\mu _L+\nu _z}(\alpha )$$\end{document} as the Gaussian interaction energy between νz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _z$$\end{document} and μL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _L$$\end{document}. We show that any strict local or global minimality result that is true in the point case μ=ν=δ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu =\nu =\delta _0$$\end{document} also holds for L↦θμL+ν0(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\mapsto \theta _{\mu _L+\nu _0}(\alpha )$$\end{document} and z↦θμL+νz(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\mapsto \theta _{\mu _L+\nu _z}(\alpha )$$\end{document} when the measures are radially symmetric with respect to the points of L∪{z}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\cup \{z\}$$\end{document} and sufficiently rescaled around them (i.e., at a low scale). The minimality at all scales is also proved when the radially symmetric measures are generated by a completely monotone kernel. The method is based on a generalized Jacobi transformation formula, some standard integral representations for lattice energies, and an approximation argument. Furthermore, for the honeycomb lattice H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {H}}$$\end{document}, the center of any primitive honeycomb is shown to minimize z↦θμH+νz(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\mapsto \theta _{\mu _{{\mathsf {H}}}+\nu _z}(\alpha )$$\end{document}, and many applications are stated for other particular physically relevant lattices including the triangular, square, cubic, orthorhombic, body-centered-cubic, and face-centered-cubic lattices.
引用
收藏
页码:115 / 138
页数:23
相关论文
共 99 条
[1]  
Aftalion A(2006)Lowest Landau level functional and Bargmann spaces for Bose–Einstein condensates J. Funct. Anal. 241 661-702
[2]  
Blanc X(1997)A minimum problem for heat kernels of flat tori Contemp. Math. 201 227-243
[3]  
Nier F(2013)Nonlocal interactions by repulsive–attractive potentials: radial ins/stability Phys. D 260 5-25
[4]  
Baernstein A(2011)A primer of swarm equilibria SIAM J. Appl. Dyn. Syst. 10 212-250
[5]  
Balagué D(1929)Sur les fonctions absolument monotones Acta Math. 52 1-66
[6]  
Carrillo JA(2016)Two-dimensional theta functions and crystallization among Bravais lattices SIAM J. Math. Anal. 48 3236-3269
[7]  
Laurent T(2018)Local variational study of 2d lattice energies and application to Lennard–Jones type interactions Nonlinearity 31 3973-4005
[8]  
Raoul G(2019)Local optimality of cubic lattices for interaction energies Anal. Math. Phys. 9 403-426
[9]  
Bernoff AJ(2019)Minimizing lattice structures for Morse potential energy in two and three dimensions J. Math. Phys. 60 102901-1656
[10]  
Topaz CM(2018)On Born’s conjecture about optimal distribution of charges for an infinite ionic crystal J. Nonlinear Sci. 28 1629-2228