The Riesz-Herz equivalence for capacitary maximal functions

被引:0
作者
Irina Asekritova
Joan Cerdà
Natan Kruglyak
机构
[1] Linnaeus University,School of Mathematics and System Engineering
[2] Universitat de Barcelona,Departament de Matemàtica Aplicada i Anàlisi
[3] Linkoping University,Department of Mathematics
来源
Revista Matemática Complutense | 2012年 / 25卷
关键词
Maximal function; Capacity; Morrey space; Dyadic cubes; Interpolation spaces; 42B25; 46B70; 28A12; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a Riesz-Herz estimate for the maximal function associated to a capacity C on ℝn, MCf(x)=sup Q∋xC(Q)−1∫Q|f|, which extends the equivalence (Mf)∗(t)≃f∗∗(t) for the usual Hardy-Littlewood maximal function Mf. The proof is based on an extension of the Wiener-Stein estimates for the distribution function of the maximal function, obtained using a convenient family of dyadic cubes. As a byproduct we obtain a description of the norm of the interpolation space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(L^{1},{\mathcal{L}}^{1,C})_{1/p',p}$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{L}}^{1,C}$\end{document} denotes the Morrey space based on a capacity.
引用
收藏
页码:43 / 59
页数:16
相关论文
共 27 条
  • [1] Asekritova I.U.(1997)Distribution and rearrangement estimates of the maximal function and interpolation Stud. Math. 124 107-132
  • [2] Krugljak N.(1999)Rearrangement of Hardy-Littlewood maximal functions in Lorentz spaces Proc. Am. Math. Soc. 128 65-74
  • [3] Maligranda L.(1979)Weak type estimates for Proc. Symp. Pure Math. 35 201-229
  • [4] Persson L.-E.(1999) and Proc. Am. Math. Soc. 127 79-87
  • [5] Bastero J.(1952)Two-weighted estimations for the Hardy-Littlewood maximal function in ideal Banach spaces Acta Math. 88 85-139
  • [6] Milman M.(2000)On the existence of certain singular integrals Stud. Math. 138 277-284
  • [7] Ruiz F.J.(2002)A sharp rearrangement inequality for the maximal operator Diss. Math. 410 50-201
  • [8] Bennett C.(1978)Boundedness of fractional maximal operators between classical and weak-type Lorentz spaces Adv. Math. 30 171-326
  • [9] Sharpley R.(2006)A theory of entropy in Fourier analysis Ark. Mat. 44 309-90
  • [10] Berezhnoi E.I.(2002)Sharp integral estimates for the fractional maximal function and interpolation Algebra Anal. 14 63-13