Explicit upper bound for the (analytic) rank of J0(q)

被引:0
作者
E. Kowalski
P. Michel
机构
[1] Fine Hall Princeton University,Department of Mathematics
[2] Université Montpellier II cc 051,undefined
来源
Israel Journal of Mathematics | 2000年 / 120卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We refine the techniques of our previous paper [KM1] to prove that the average order of vanishing of L-functions of primitive automorphic forms of weight 2 and prime level q satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{f \in {S_2}(q)*} {{\text{or}}{{\text{d}}_s}} = {}_{1/2}L(f,s) \leqslant C\left| {{S_2}(q)*} \right|$$\end{document} with C = 6.5, for all q large enough. On the Birch and Swinnerton-Dyer conjecture, this implies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{rank}}{J_0}(q) \leqslant C\dim {J_0}(q)$$\end{document} for q prime large enough.
引用
收藏
页码:179 / 204
页数:25
相关论文
共 50 条
[41]   An upper bound for the Waring rank of a form [J].
Jelisiejew, Joachim .
ARCHIV DER MATHEMATIK, 2014, 102 (04) :329-336
[42]   An upper bound for the minimum rank of a graph [J].
Berman, Avi ;
Friedland, Shmuel ;
Hogben, Leslie ;
Rothblum, Uriel G. ;
Shader, Bryan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (07) :1629-1638
[43]   An upper bound for the Waring rank of a form [J].
Joachim Jelisiejew .
Archiv der Mathematik, 2014, 102 :329-336
[44]   Generation of J0 Bessel beams with controlled spatial coherence features [J].
Carbajal-Dominguez, Adrian ;
Bernal, Jorge ;
Martin-Ruiz, Alberto ;
Martinez Niconoff, Gabriel .
OPTICS EXPRESS, 2010, 18 (08) :8400-8405
[45]   THE ROOTS OF J0(Z)-IJ1(Z)=O [J].
MACDONALD, DA .
QUARTERLY OF APPLIED MATHEMATICS, 1989, 47 (02) :375-378
[46]   DIE ACIDITATSFUNKTION J0 VON PERCHLORSAURE IN DIOXAN-WASSER [J].
DAHN, H ;
LOEWE, L ;
ROTZLER, G .
CHEMISCHE BERICHTE-RECUEIL, 1960, 93 (07) :1572-1578
[47]   DEMONSTRATION FOR OBSERVING J0(X) ON A RESONANT ROTATING VERTICAL CHAIN [J].
WESTERN, AB .
AMERICAN JOURNAL OF PHYSICS, 1980, 48 (01) :54-56
[48]   Component group of the p-new subvariety of J0(Mp) [J].
Ling, S .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 116 (1) :117-123
[49]   On the upper bound explicit solutions of the Lyapunov equation [J].
Alexandridis, AT .
DYNAMICS AND CONTROL, 1996, 6 (03) :309-316
[50]   AN IMPROVED UPPER BOUND FOR THE WARING RANK OF THE DETERMINANT [J].
Johns, Garritt ;
Teitler, Zach .
JOURNAL OF COMMUTATIVE ALGEBRA, 2022, 14 (03) :415-425