Explicit upper bound for the (analytic) rank of J0(q)

被引:0
作者
E. Kowalski
P. Michel
机构
[1] Fine Hall Princeton University,Department of Mathematics
[2] Université Montpellier II cc 051,undefined
来源
Israel Journal of Mathematics | 2000年 / 120卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We refine the techniques of our previous paper [KM1] to prove that the average order of vanishing of L-functions of primitive automorphic forms of weight 2 and prime level q satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{f \in {S_2}(q)*} {{\text{or}}{{\text{d}}_s}} = {}_{1/2}L(f,s) \leqslant C\left| {{S_2}(q)*} \right|$$\end{document} with C = 6.5, for all q large enough. On the Birch and Swinnerton-Dyer conjecture, this implies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{rank}}{J_0}(q) \leqslant C\dim {J_0}(q)$$\end{document} for q prime large enough.
引用
收藏
页码:179 / 204
页数:25
相关论文
共 50 条
[31]   An upper bound for nonnegative rank [J].
Shitov, Yaroslav .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 122 :126-132
[32]   On Eisenstein ideals and the cuspidal group of J0(N) [J].
Hwajong Yoo .
Israel Journal of Mathematics, 2016, 214 :359-377
[33]   无衍射J0光束的理论分析 [J].
邢笑雪 ;
吴逢铁 ;
张建荣 .
华侨大学学报(自然科学版), 2006, (01) :31-34
[34]   Polynomial bound for the Partition Rank vs the Analytic Rank of Tensors [J].
Janzer, Oliver .
DISCRETE ANALYSIS, 2020,
[35]   J0 RATIO METHOD FOR MEASURING SMALL VIBRATION AMPLITUDES [J].
XIANQUAN, D ;
ZHONGMIN, Y ;
WENLONG, L .
SCIENTIA SINICA, 1979, 22 (06) :717-728
[36]   IRRADIANCE FROM AN APERTURE WITH A TRUNCATED J0 BESSEL BEAM [J].
DENICOLA, S .
OPTICS COMMUNICATIONS, 1991, 80 (5-6) :299-302
[37]   FRACTIONAL APPROXIMATIONS TO THE BESSEL-FUNCTION J0(X) [J].
MARTIN, P ;
GUERRERO, AL .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (04) :705-707
[38]   Multiplicative subgroups of J0(N) and applications to elliptic curves [J].
Vatsal, V .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2005, 4 (02) :281-316
[39]   Explicit upper bound for entropy numbers [J].
Hencl, S .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2004, 23 (02) :221-236
[40]   An explicit upper bound for |? (1+it)| [J].
Patel, Dhir .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2022, 33 (05) :1012-1032