Explicit upper bound for the (analytic) rank of J0(q)

被引:0
作者
E. Kowalski
P. Michel
机构
[1] Fine Hall Princeton University,Department of Mathematics
[2] Université Montpellier II cc 051,undefined
来源
Israel Journal of Mathematics | 2000年 / 120卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We refine the techniques of our previous paper [KM1] to prove that the average order of vanishing of L-functions of primitive automorphic forms of weight 2 and prime level q satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{f \in {S_2}(q)*} {{\text{or}}{{\text{d}}_s}} = {}_{1/2}L(f,s) \leqslant C\left| {{S_2}(q)*} \right|$$\end{document} with C = 6.5, for all q large enough. On the Birch and Swinnerton-Dyer conjecture, this implies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{rank}}{J_0}(q) \leqslant C\dim {J_0}(q)$$\end{document} for q prime large enough.
引用
收藏
页码:179 / 204
页数:25
相关论文
共 50 条
[21]   The rational torsion subgroup of J0(p®) [J].
Ho, Sheng-Yang Kevin .
RESEARCH IN THE MATHEMATICAL SCIENCES, 2024, 11 (04)
[22]   The rational torsion subgroup of J0(N) [J].
Yoo, Hwajong .
ADVANCES IN MATHEMATICS, 2023, 426
[23]   Component groups of quotients of J0(N) [J].
Kohel, DR ;
Stein, WA .
ALGORITHMIC NUMBER THEORY, 2000, 1838 :405-412
[24]   ROOTS OF J0(Z)-IJ1(Z)=0 AS SADDLE-POINTS OF THE REDUCED LOGARITHMIC DERIVATIVE OF J0(Z) [J].
ABAD, J ;
SESMA, J .
QUARTERLY OF APPLIED MATHEMATICS, 1991, 49 (03) :495-496
[25]   The Manin constant of an optimal quotient of J0(431) [J].
Joyce, A .
JOURNAL OF NUMBER THEORY, 2005, 110 (02) :325-330
[26]   BESSEL FUNCTIONS J0 AND J1 OF COMPLEX ARGUMENT [J].
ARDILL, RWB ;
MORIARTY, KJM .
COMPUTER PHYSICS COMMUNICATIONS, 1977, 13 (01) :17-24
[27]   POLYNOMIAL BOUND FOR PARTITION RANK IN TERMS OF ANALYTIC RANK [J].
Milicevic, Luka .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2019, 29 (05) :1503-1530
[28]   Polynomial bound for partition rank in terms of analytic rank [J].
Luka Milićević .
Geometric and Functional Analysis, 2019, 29 :1503-1530
[29]   Torsion points on J0(N) and Galois representations [J].
Ribet, KA .
ARITHMETIC THEORY OF ELLIPTIC CURVES, 1999, 1716 :145-166
[30]   On component groups of J0(N) and degeneracy maps [J].
Ling, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (11) :3201-3210