A note on the distinctness of some Kloosterman sums

被引:0
作者
Yuri Borissov
Lyubomir Borissov
机构
[1] Bulgarian Academy of Sciences,Institute of Mathematics and Informatics
来源
Cryptography and Communications | 2020年 / 12卷
关键词
Kloosterman sum; Kloosterman zero; Distinctness of Kloosterman sums.; 11L05; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
The Fischer result about distinctness of the Kloosterman sums on F∗p is extended for the finite fields of degrees of extension that are powers of 2. To obtain the desired outcome, we give an elementary proof of the fact that there does not exist a pair of Kloosterman sums on same odd characteristic fields which are opposite to each other.
引用
收藏
页码:1051 / 1056
页数:5
相关论文
共 19 条
[1]  
Zinoviev VA(2019)On classical Kloosterman sums Cryptography and Communications 11 461-496
[2]  
Hurt NE(1997)Exponential sums and coding theory: a review Acta Appl. Math. 46 49-91
[3]  
Fischer B(1992)Distinctness of Kloosterman sums Contemporary Mathematics 133 81-102
[4]  
Wan D(1995)Minimal polynomials and distinctness of Kloosterman sums Finite Fields Appl. 1 189-203
[5]  
Cao X(2008)New Kloosterman sum identities and equalities over finite fields Finite Fields Appl. 14 823-833
[6]  
Hollmann HDL(2011)On zeros of Kloosterman sums Designs, Codes and Cryptography 59 223-230
[7]  
Xiang Q(2010)On integer values of Kloosterman sums IEEE IT 56 4011-4013
[8]  
Lisonek P(2009)On certain values of Kloosterman sums IEEE IT 55 3563-3564
[9]  
Moisio M(1932)Über die Kloostermanschen Summen S(u,v; q) Math. Zeit. 34 91-109
[10]  
Kononen KP(1969)Kloosterman sums and finite field extensions Acta Arithmetika XVI. 2 179-193