Finite Fractal Dimensional Pullback Attractors for a Class of 2D Magneto-Viscoelastic Flows

被引:0
|
作者
Chengfei Ai
Jun Shen
机构
[1] Yunnan University,School of Mathematics and Statistics
[2] Sichuan University,School of Mathematics
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2024年 / 47卷
关键词
Magneto-viscoelastic flows; Pullback attractors; Fractal dimension; The method of ; -trajectories; 35Q35; 35B41; 37L30; 76A10;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, the long-time behaviors of weak solutions for the 2D non-autonomous magneto-viscoelastic flows are considered. Unlike the results established by Liu and Liu (Politeh Univ Buchar Sci Bull Ser A Appl Math Phys 81(4):155–166, 2019), utilizing the method of ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-trajectories introduced by Málek and Pražák (J Differ Equ 181(2):243–279, 2002), we first justify the existence of finite-dimensional pullback attractors for the process {L(t,τ)}t≥τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{L(t,\tau )\}_{t\ge \tau }$$\end{document} in the ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-trajectories space Xℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{\ell }$$\end{document}. Then we obtain the corresponding finite-dimensional pullback attractors for the process {U(t,τ)}t≥τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{U(t,\tau )\}_{t\ge \tau }$$\end{document} in the original phase space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Finite Fractal Dimensional Pullback Attractors for a Class of 2D Magneto-Viscoelastic Flows
    Ai, Chengfei
    Shen, Jun
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (01)
  • [2] GLOBAL ATTRACTOR FOR A MATHEMATICAL MODEL OF 2D MAGNETO-VISCOELASTIC FLOWS
    Liu, Aibo
    Liu, Changchun
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2019, 81 (04): : 155 - 166
  • [3] Global attractor for a mathematical model of 2d magneto-viscoelastic flows
    Liu, Aibo
    Liu, Changchun
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2019, 81 (04): : 155 - 166
  • [4] On pullback attractors for a class of two-dimensional turbulent shear flows
    Boukrouche, Mahdi
    Lukaszewicz, Grzegorz
    Real, J.
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2006, 44 (13-14) : 830 - 844
  • [5] The fractal dimension of pullback attractors for the 2D Navier-Stokes equations with delay
    Yang, Xin-Guang
    Guo, Boling
    Guo, Chunxiao
    Li, Desheng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (17) : 9637 - 9653
  • [6] THE BOUNDEDNESS AND UPPER SEMICONTINUITY OF THE PULLBACK ATTRACTORS FOR A 2D MICROPOLAR FLUID FLOWS WITH DELAY
    Sun, Wenlong
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (03): : 1343 - 1356
  • [7] Pullback attractors for 2D MHD equations with delays
    Song, Xiaoya
    Xiong, Yangmin
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (07) : 1ENG
  • [8] Finite fractal dimension of pullback attractors for non-autonomous 2D Navier-Stokes equations in some unbounded domains
    Langa, Jose A.
    Lukaszewicz, G.
    Real, J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (03) : 735 - 749
  • [9] ASYMPTOTIC BEHAVIOR OF PULLBACK ATTRACTORS FOR NON-AUTONOMOUS MICROPOLAR FLUID FLOWS IN 2D UNBOUNDED DOMAINS
    Sun, Wenlong
    Li, Yeping
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [10] Pullback Attractors for 2D Navier-Stokes Equations with Delays and Their Regularity
    Garcia-Luengo, Julia
    Marin-Rubio, Pedro
    Real, Jose
    ADVANCED NONLINEAR STUDIES, 2013, 13 (02) : 331 - 357