On Homogenization for Piecewise Locally Periodic Operators

被引:0
作者
N. N. Senik
机构
[1] Saint Petersburg State University,
来源
Russian Journal of Mathematical Physics | 2023年 / 30卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:270 / 274
页数:4
相关论文
共 12 条
[1]  
Birman M. Sh.(2004)Second Order Periodic Differential Operators. Threshold Properties and Homogenization St. Petersburg Math. J. 15 639-714
[2]  
Suslina T. A.(2004)Error Estimate and Unfolding for Periodic Homogenization Asymptot. Anal. 40 269-286
[3]  
Griso G.(2013)Operator Error Estimates for Homogenization of the Elliptic Dirichlet Problem in a Bounded Domain St. Petersburg Math. J. 24 949-976
[4]  
Pakhnin M. A.(2007)Operator Estimates in Reiterated and Locally Periodic Homogenization Dokl. Math. 76 548-553
[5]  
Suslina T. A.(2017)On Homogenization for Non-Self-Adjoint Locally Periodic Elliptic Operators Funct. Anal. Appl. 51 152-156
[6]  
Pastukhova S. E.(2020)On Homogenization of Locally Periodic Elliptic and Parabolic Operators Funct. Anal. Appl. 54 68-72
[7]  
Tikhomirov R. N.(2022)Homogenization for Locally Periodic Elliptic Operators J. Math. Anal. Appl. 505 0-881
[8]  
Senik N. N.(2023)Homogenization for Locally Periodic Elliptic Problems on a Domain SIAM J. Math. Anal. 55 849-538
[9]  
Senik N. N.(2005)On Operator Estimates in Homogenization Theory Dokl. Math. 72 535-undefined
[10]  
Senik N. N.(undefined)undefined undefined undefined undefined-undefined