共 56 条
- [1] Zappia L., Theis F.J., Over 1000 tools reveal trends in the single-cell RNA-seq analysis landscape, Genome Biol., 22, pp. 1-18, (2021)
- [2] Moriel N., Et al., NovoSpaRc: flexible spatial reconstruction of single-cell gene expression with optimal transport, Nat. Protoc., 16, pp. 4177-4200, (2021)
- [3] Nitzan M., Karaiskos N., Friedman N., Rajewsky N., Gene expression cartography, Nature, 576, pp. 132-137, (2019)
- [4] Zeng Z., Li Y., Li Y., Luo Y., Statistical and machine learning methods for spatially resolved transcriptomics data analysis, Genome Biol., 23, pp. 1-23, (2022)
- [5] Saelens W., Cannoodt R., Todorov H., Saeys Y., A comparison of single-cell trajectory inference methods, Nat. Biotechnol., 37, pp. 547-554, (2019)
- [6] Teves J.M., Won K.J., Mapping cellular coordinates through advances in spatial transcriptomics technology, Molecules Cells, 43, (2020)
- [7] Polanski K., Et al., BBKNN: fast batch alignment of single cell transcriptomes, Bioinformatics, 36, pp. 964-965, (2020)
- [8] Korsunsky I., Et al., Fast, sensitive and accurate integration of single-cell data with Harmony, Nat. Methods, 16, pp. 1289-1296, (2019)
- [9] Lopez R., Regier J., Cole M.B., Jordan M.I., Yosef N., Deep generative modeling for single-cell transcriptomics, Nat. Methods, 15, pp. 1053-1058, (2018)
- [10] Gayoso A., Et al., A Python library for probabilistic analysis of single-cell omics data, Nat. Biotechnol., 40, pp. 163-166, (2022)