Convergence of distributed optimal control problems governed by elliptic variational inequalities

被引:0
|
作者
Mahdi Boukrouche
Domingo A. Tarzia
机构
[1] PRES Lyon University,Departamento de Matemática
[2] University of Saint-Etienne,CONICET, FCE
[3] Laboratory of Mathematics,undefined
[4] Univ. Austral,undefined
关键词
Elliptic variational inequalities; Convex combinations of the solutions; Distributed optimal control problems; Convergence of the optimal controls; Obstacle problem; Free boundary problems;
D O I
暂无
中图分类号
学科分类号
摘要
First, let ug be the unique solution of an elliptic variational inequality with source term g. We establish, in the general case, the error estimate between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_{3}(\mu)=\mu u_{g_{1}}+ (1-\mu)u_{g_{2}}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_{4}(\mu)=u_{\mu g_{1}+ (1-\mu) g_{2}}$\end{document} for μ∈[0,1]. Secondly, we consider a family of distributed optimal control problems governed by elliptic variational inequalities over the internal energy g for each positive heat transfer coefficient h given on a part of the boundary of the domain. For a given cost functional and using some monotony property between u3(μ) and u4(μ) given in Mignot (J. Funct. Anal. 22:130–185, 1976), we prove the strong convergence of the optimal controls and states associated to this family of distributed optimal control problems governed by elliptic variational inequalities to a limit Dirichlet distributed optimal control problem, governed also by an elliptic variational inequality, when the parameter h goes to infinity. We obtain this convergence without using the adjoint state problem (or the Mignot’s conical differentiability) which is a great advantage with respect to the proof given in Gariboldi and Tarzia (Appl. Math. Optim. 47:213–230, 2003), for optimal control problems governed by elliptic variational equalities.
引用
收藏
页码:375 / 393
页数:18
相关论文
共 50 条