Sinc-Galerkin method for solving the time fractional convection–diffusion equation with variable coefficients

被引:0
作者
Li Juan Chen
MingZhu Li
Qiang Xu
机构
[1] Qingdao University of Technology,School of Science
[2] Harbin Institute of Technology,Department of Mathematics
[3] Shandong Normal University,School of Mathematics and Statistics
来源
Advances in Difference Equations | / 2020卷
关键词
Sinc-Galerkin method; Fractional convection–diffusion equation; Convergence;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a new numerical algorithm for solving the time fractional convection–diffusion equation with variable coefficients is proposed. The time fractional derivative is estimated using the L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{1}$\end{document} formula, and the spatial derivative is discretized by the sinc-Galerkin method. The convergence analysis of this method is investigated in detail. The numerical solution is 2−α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2-\alpha$\end{document} order accuracy in time and exponential rate of convergence in space. Finally, some numerical examples are given to show the effectiveness of the numerical scheme.
引用
收藏
相关论文
共 100 条
[1]  
Raberto M.(2002)Waiting-times and returns in high-frequency financial data: an empirical study Physica A 314 749-755
[2]  
Scalas E.(1984)Application of fractional calculus to the theory of viscoelasticity J. Appl. Mech. 51 229-307
[3]  
Mainardi F.(2010)Particle tracking for fractional diffusion with two time scales Comput. Math. Appl. 59 1078-1086
[4]  
Koeller R.C.(2011)The fractional diffusion model with an absorption term and modified Fick’s law for non-local transport processes Nonlinear Anal. 11 262-269
[5]  
Meerschaert M.M.(2019)A new fractal nonlinear Burgers equation arising in the acoustic signals propagation Math. Methods Appl. Sci. 42 7539-7544
[6]  
Zhang Y.(2019)Fundamental solutions of anomalous diffusion equations with the decay exponential kernel Math. Methods Appl. Sci. 42 4054-4060
[7]  
Baeumer B.(2019)On integrability of the time fractional nonlinear heat conduction equation J. Geom. Phys. 144 190-198
[8]  
Jiang X.(2020)Analysis of the time fractional nonlinear diffusion equation from diffusion process J. Appl. Anal. Comput. 10 1060-1072
[9]  
Xu M.(2020)Group analysis to the time fractional nonlinear wave equation Int. J. Math. 31 431-452
[10]  
Qi H.(2013)Compact finite difference scheme for the solution of time fractional advection-dispersion equation Numer. Algorithms 63 22-37