Word Problem of the Perkins Semigroup via Directed Acyclic Graphs

被引:0
作者
Sergey Kitaev
Steve Seif
机构
[1] Reykjavík University,Institute of Mathematics
[2] University of Louisville,Mathematics Department
来源
Order | 2008年 / 25卷
关键词
Directed acyclic graph; Partially order set; Poset; Perkins semigroup; Free semigroup; Word problem; Computational complexity;
D O I
暂无
中图分类号
学科分类号
摘要
For a word w in an alphabet Γ, the alternation word digraph Alt(w), a certain directed acyclic graph associated with w, is presented as a means to analyze the free spectrum of the Perkins monoid \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf{B_2^1}$\end{document}. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(f_n^{\mathbf{B_2^1}})$\end{document} denote the free spectrum of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf{B_2^1}$\end{document}, let an be the number of distinct alternation word digraphs on words whose alphabet is contained in {x1,..., xn}, and let pn denote the number of distinct labeled posets on {1,..., n}. The word problem for the Perkins semigroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf{B_2^1}$\end{document} is solved here in terms of alternation word digraphs: Roughly speaking, two words u and v are equivalent over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf{B_2^1}$\end{document} if and only if certain alternation graphs associated with u and v are equal. This solution provides the main application, the bounds: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_n \leq a_n \leq f_n^{\mathbf{B_2^1}} \leq 2^{n}a_{2n}^2$\end{document}. A result of the second author in a companion paper states that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\operatorname{log} \; a_n)\in O(n^3)$\end{document}, from which it follows that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\operatorname{log} f_n^{\mathbf{B_2^1}})\in O(n^3)$\end{document} as well. Alternation word digraphs are of independent interest combinatorially. It is shown here that the computational complexity problem that has as instance {u,v} where u,v are words of finite length, and question “Is Alt(u) = Alt(v)?”, is co-NP-complete. Additionally, alternation word digraphs are acyclic, and certain of them are natural extensions of posets; each realizer of a finite poset determines an extension by an alternation word digraph.
引用
收藏
页码:177 / 194
页数:17
相关论文
共 29 条
[1]  
Burris S.(1993)The equivalence problem for finite rings J. Symbol. Comput. 15 67-71
[2]  
Lawrence J.(2004)Results on the equivalence problem for finite groups Alg. Univ. 52 495-500
[3]  
Burris S.(2007)The complexity of the equivalence problem for non-solvable groups Bull. Lond. Math. Soc. 39 253-260
[4]  
Lawrence J.(1999)Congruence modular varieties with small free spectra Algebra Universalis 42 165-181
[5]  
Horvath G.(2004)Complexity of identity checking for semigroups Int. J. Algebra Comput. 14 455-464
[6]  
Lawrence J.(2008)On representable graphs Automata, Languages and Combinatorics 13 45-54
[7]  
Merai L.(1990)Free objects in certain varieties of inverse semigroups Canad. J. Math. 42 1084-1097
[8]  
Szabo C.(1963)Some indecomposable varieties of groups Quart J. Math. Oxford 14 46-58
[9]  
Kearnes K.A.(1969)Bases for equational theories of semigroups J. Algebra 11 298-314
[10]  
Kisielewicz A.(1989)Free combinatorial strict inverse semigroups J. London Math. Soc. (2) 39 102-120