The central polynomials for the Grassmann algebra

被引:0
作者
Antônio Pereira Brandão
Plamen Koshlukov
Alexei Krasilnikov
Élida Alves da Silva
机构
[1] UAME/CCT,Departamento de Matemática
[2] UFCG,Departamento de Matemática
[3] IMECC,undefined
[4] UNICAMP,undefined
[5] Universidade de Brasília,undefined
[6] Universidade Federal de Goiás,undefined
来源
Israel Journal of Mathematics | 2010年 / 179卷
关键词
Vector Space; English Translation; Associative Algebra; Polynomial Identity; Vector Subspace;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we describe the central polynomials for the infinite-dimensional unitary Grassmann algebra G over an infinite field F of characteristic ≠ 2. We exhibit a set of polynomials that generates the vector space C(G) of the central polynomials of G as a T-space. Using a deep result of Shchigolev we prove that if charF = p > 2 then the T-space C(G) is not finitely generated. Moreover, over such a field F, C(G) is a limit T-space, that is, C(G) is not a finitely generated T-space but every larger T-space W ≩ C(G) is. We obtain similar results for the infinite-dimensional nonunitary Grassmann algebra H as well.
引用
收藏
页码:127 / 144
页数:17
相关论文
共 50 条
  • [31] Associative algebras and computer algebra
    Makhlouf, A
    THEORETICAL COMPUTER SCIENCE, 1997, 187 (1-2) : 123 - 145
  • [32] An evolution algebra in population genetics
    Labra, A.
    Ladra, M.
    Rozikov, U. A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 457 : 348 - 362
  • [33] Symmetric linearizations for matrix polynomials
    Higham, Nicholas J.
    Mackey, D. Steven
    Mackey, Niloufer
    Tisseur, Francoise
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (01) : 143 - 159
  • [34] Derivations and Identities for Kravchuk Polynomials
    L. P. Bedratyuk
    Ukrainian Mathematical Journal, 2014, 65 : 1755 - 1773
  • [35] Mutation Polynomials and Oriented Matroids
    J. Lawrence
    Discrete & Computational Geometry, 2000, 24 : 365 - 390
  • [36] Standard polynomials and matrices with superinvolutions
    Giambruno, Antonio
    Ioppolo, Antonio
    Martino, Fabrizio
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 504 : 272 - 291
  • [37] The conditioning of linearizations of matrix polynomials
    Higham, Nicholas J.
    Mackey, D. Steven
    Tisseur, Francoise
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 28 (04) : 1005 - 1028
  • [39] A Nichtnegativstellensatz for polynomials in noncommuting variables
    Igor Klep
    Markus Schweighofer
    Israel Journal of Mathematics, 2007, 161
  • [40] On Multiple Polynomials of Capelli Type
    Antonov, S. Y.
    Antonova, A. V.
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA FIZIKO-MATEMATICHESKIE NAUKI, 2016, 158 (01): : 5 - 25