Limiting Empirical Singular Value Distribution of Restrictions of Discrete Fourier Transform Matrices

被引:0
作者
Brendan Farrell
机构
[1] Technische Universität München,Lehrstuhl für Theoretische Informationstechnik
来源
Journal of Fourier Analysis and Applications | 2011年 / 17卷
关键词
Singular values; Restrictions of Fourier matrices; Limiting Distribution; Restrictions of Unitary Matrices; 48B06; 46B09; 60B20; 42A61;
D O I
暂无
中图分类号
学科分类号
摘要
We determine the limiting empirical singular value distribution for discrete Fourier transform (DFT) matrices when a random set of columns and rows is removed.
引用
收藏
页码:733 / 753
页数:20
相关论文
共 30 条
  • [1] Bai Z.D.(1988)Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix Ann. Probab. 16 1729-1741
  • [2] Yin Y.Q.(1993)Limit of the smallest eigenvalue of a large-dimensional sample covariance matrix Ann. Probab. 21 1275-1294
  • [3] Bai Z.D.(1984)On widths of the Euclidean ball Sov. Math., Dokl. 30 200-204
  • [4] Yin Y.Q.(1980)A limit theorem for the norm of random matrices Ann. Probab. 8 252-261
  • [5] Garnaev A.Y.(1984)Norms of random matrices and widths of finite-dimensional sets Math. USSR, Sb. 48 173-182
  • [6] Gluskin E.D.(1977)Spectral analysis of networks with random topologies SIAM J. Appl. Math. 32 499-519
  • [7] Geman S.(1967)Distribution of eigenvalues in certain sets of random matrices Mat. Sb. (N.S.) 72 507-536
  • [8] Gluskin E.D.(2005)Large deviation for the empirical eigenvalue density of truncated Haar unitary matrices Probab. Theory Relat. Fields 133 175-189
  • [9] Grenander U.(2008)The Littlewood-Offord problem and invertibility of random matrices Adv. Math. 218 600-633
  • [10] Silverstein J.(2005)An uncertainty principle for cyclic groups of prime order Math. Res. Lett. 12 121-127