Mixable shuffles, quasi-shuffles and Hopf algebras

被引:0
|
作者
Kurusch Ebrahimi-Fard
Li Guo
机构
[1] Universität Bonn - Physikalisches Institut,Department of Mathematics and Computer Science
[2] Rutgers University,undefined
来源
Journal of Algebraic Combinatorics | 2006年 / 24卷
关键词
Hopf Algebra; Commutative Ring; Algebr Comb; Admissible Pair; Baxter Equation;
D O I
暂无
中图分类号
学科分类号
摘要
The quasi-shuffle product and mixable shuffle product are both generalizations of the shuffle product and have both been studied quite extensively recently. We relate these two generalizations and realize quasi-shuffle product algebras as subalgebras of mixable shuffle product algebras. As an application, we obtain Hopf algebra structures in free Rota–Baxter algebras.
引用
收藏
页码:83 / 101
页数:18
相关论文
共 50 条
  • [21] Some applications of Frobenius algebras to Hopf algebras
    Lorenz, Martin
    GROUPS, ALGEBRAS AND APPLICATIONS, 2011, 537 : 269 - 289
  • [22] On actions of Hopf algebras on commutative algebras and their invariants
    Tyc A.
    Annali dell’Università di Ferrara, 2005, 51 (1): : 99 - 103
  • [23] Hopf-Jacobson radical of Hopf module algebras
    Cai, CR
    Sun, JH
    CHINESE SCIENCE BULLETIN, 1996, 41 (08): : 621 - 625
  • [24] Hopf-Jacobson radical of Hopf module algebras
    蔡传仁
    孙建华
    Chinese Science Bulletin, 1996, (08) : 621 - 625
  • [25] Generalized Diagonal Crossed Products and Smash Products for Quasi-Hopf Algebras. Applications
    Daniel Bulacu
    Florin Panaite
    Freddy Van Oystaeyen
    Communications in Mathematical Physics, 2006, 266 : 355 - 399
  • [26] On Galois Extension of Hopf Algebras
    Guohua LIU Shenglin ZHU Department of Mathematics
    Chinese Annals of Mathematics, 2008, (01) : 65 - 70
  • [27] The Exponential Map for Hopf Algebras
    Alhamzi, Ghaliah
    Beggs, Edwin
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2022, 18
  • [28] On Hopf algebras with nonzero integral
    Cuadra, J.
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (06) : 2143 - 2156
  • [29] Hopf algebras and Tutte polynomials
    Krajewski, Thomas
    Moffatt, Lain
    Tanasa, Adrian
    ADVANCES IN APPLIED MATHEMATICS, 2018, 95 : 271 - 330
  • [30] Forms of coalgebras and Hopf algebras
    Parker, DB
    JOURNAL OF ALGEBRA, 2001, 239 (01) : 1 - 34