Weak attractor for a dissipative Euler equation

被引:21
作者
Bessaih H. [1 ]
Flandoli F. [1 ]
机构
[1] Dipartimento di Matematica Applicata U. Dini, 56126 Pisa
关键词
Attractors; Dissipative Euler Equation; Dynamical systems;
D O I
10.1023/A:1009042520953
中图分类号
学科分类号
摘要
A two-dimensional dissipative Euler equation is considered. We proved the existence of a global attractor in a weak sense, for the corresponding shift dynamical system in path space. © 2000 Plenum Publishing Corporation.
引用
收藏
页码:713 / 732
页数:19
相关论文
共 15 条
  • [1] Bardos C., Éxistence et unicité de la solution de l'équation d'Euler en dimensions deux, J. Math. Anal. Appl., 40, pp. 769-780, (1972)
  • [2] Bessaih H., Flandoli F., 2-D Euler equations perturbed by noise, Nonlin. Diff. Eq. Appl., 6, 1, pp. 35-54, (1999)
  • [3] Bessaih H., Martingale stationary solutions to a dissipative Euler equation, Stoch. Anal. Appl., 17, 5, pp. 713-727, (1999)
  • [4] Gazzola F., Pata V., A uniform attractor for a nonautonomous generalized Navier-Stokes equation, Z. Anal. Anwend., 16, pp. 435-449, (1997)
  • [5] Gazzola F., Sardella M., Attractors for families of processes in weak topologies of Banach spaces, Discrete Cont. Dynam. Syst., 4, 3, pp. 455-466, (1998)
  • [6] Chepyzhov V.V., Vishik M.I., Nonautonomous evolution equations and their attractors, Russ. J. Math. Phys., 1, pp. 165-190, (1993)
  • [7] Flandoli F., Schmalfuss B., Weak solutions and attractors for the 3-dimensional Navier-Stokes equation with nonregular force, J. Dyn. Diff. Eqs., 11, 2, pp. 355-398, (1999)
  • [8] Gallavotti G., Ipotesi per una introduzione alia Meccanica dei Fluidi, Quaderni del Consiglio Nazionale delle Ricerche, 52, (1996)
  • [9] Ghidaglia J.M., Weakly damped forces Kortweg-de Vries behave as a finite dimensional dynamical system in the long time, J. Diff. Eqs., 74, pp. 369-390, (1998)
  • [10] Hale J.K., Stavrakakis N., Compact attractors for weak dynamical systems, Appl. Anal., 26, pp. 271-287, (1988)