Maximal non-integrally closed subrings of an integral domain

被引:0
作者
Noômen Jarboui
Suaad Aljubran
机构
[1] King Faisal University,Department of Mathematics and Statistics, College of Science
[2] Université de Sfax,Département de Mathématiques, Faculté des Sciences de Sfax
来源
Ricerche di Matematica | 2022年 / 71卷
关键词
Integral domain; Intermediate ring; Overring; Ring extension; Integral extension; Minimal extension; Integrally closed; Prüfer domain; Valuation domain; Normal pair of rings; Primary 13B02; Secondary 13C15; 13A17; 13A18; 13B25; 13E05;
D O I
暂无
中图分类号
学科分类号
摘要
Let R⊂S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\subset S$$\end{document} be an extension of integral domains. The domain R is said to be a maximal non-integrally closed subring of S if R is not integrally closed in S, while each subring of S properly containing R is integrally closed in S. Jaballah (J Algebra Appl 11(5):1250041, 18pp, 2012) has characterized these domains when S is the quotient field of R. The main purpose of this paper is to study this kind of ring extensions in the general case. Some examples are provided to illustrate our obtained results. Our main result also answers a key question raised by Gilmer and Heinzer (J Math Kyoto Univ 7(2):133–150, 1967).
引用
收藏
页码:325 / 332
页数:7
相关论文
共 29 条
  • [1] Ayache A(1997)Residually algebraic pairs of rings Math. Z. 225 49-65
  • [2] Jaballah A(2002)Maximal non-Noetherian subring of a domain J. Algebra 248 806-823
  • [3] Ayache A(2014)New results about normal pairs of rings with zero divisors Ric. Mat. 63 149-155
  • [4] Jarboui N(2017)When is the integral closure comparable to all intermediate rings Bull. Aust. Math. Soc. 95 14-21
  • [5] Ben Nasr M(1988)Couple d’anneaux partageant un idéal Arch. Math. 51 505-514
  • [6] Jarboui N(1973)Overrings of commutative rings. III: Normal pairs Trans. Am. Math. Soc. 182 175-185
  • [7] Ben Nasr M(2019)Normal pairs of noncommutative rings Ric. Mat. 371 391-429
  • [8] Zeidi N(2012)Characterizing the ring extensions that satisfy FIP or FCP J. Algebra 10 335-356
  • [9] Cahen PJ(2011)Normal pairs with zero-divisors J. Algebra Appl. 10 1351-1362
  • [10] Davis ED(2011)A generalization of Prüfer’s ascent result to normal pairs of complemented rings J. Algebra Appl. 16 461-471